오일러 정리

덤프버전 :

1. 개요
2. 정수론에서의 오일러 정리
2.1. 증명
2.1.1. 다른 증명
2.2. 응용
2.3. 기타
3. 동차함수에 대한 오일러 정리
3.1. 오일러 정리의 미분
4. 기하학에서의 오일러 정리


1. 개요[편집]


Satz von Euler / Euler

레온하르트 오일러가 증명한 정리이다. 오일러 정리는 정수론에서의 정리와 동차함수에서의 정리로 구분된다.


2. 정수론에서의 오일러 정리[편집]




정수론에서 유용하게 쓰이는 정리로, 합동식과 관련이 있다. 페르마의 소정리를 일반화한 것이다.
내용은 아래와 같다.

[math( a )]와 [math( n )]이 서로 소인 양의 정수일 때,

[math( a^{ \varphi \left( n \right) } \equiv 1 \left( \text{mod}\ n \right) )]


여기서 [math( \varphi \left( n \right) )]은 [math( 1 )]부터 [math( n )]까지의 정수 중 [math( n )]과 서로소인 정수의 개수를 구하는 오일러 파이 함수다.


2.1. 증명[편집]


[math(n)] 이하의 자연수중 [math(n)]과 서로소인 수만 모아놓은 집합을 [math(S)]라 하자.
정의에 의해 [math(S)]의 원소의 개수는 [math( \varphi \left( n \right) )]이다.

[math( S=\left\{b_1, \cdots, b_{\varphi\left(n\right)}\right\} )]

라 하자

[math(S)]의 각 원소들에 ([math(n)]과 서로소인) [math(a)]를 곱한 집합을 [math(aS)]라 하면
[math( aS=\left\{ab_1, \cdots, ab_{\varphi\left(n\right)}\right\} )]

이때, [math(aS)]의 모든 원소들은 [math(n)]과 서로소인 수들끼리 곱한 수들이므로 그 원소들 역시 [math(n)]과 서로소.

그리고 [math(aS)]의 모든 원소는 [math(n)]로 나눈 나머지가 서로 다르다 ([math(\because)] 만일 [math(ab_i \equiv ab_j (\text{mod}~n))], [math(1 \leq i,j \leq \varphi \left(n \right))]인 서로 다른 정수 [math(i)], [math(j)]가 존재한다면, [math(a(b_i - b_j ))]가 [math(n)]의 배수. [math(a)]와 [math(n)]이 서로소이므로 [math(b_i - b_j)]가 [math(n)]의 배수. 그런데, [math(b_i)]와 [math(b_j)]가 둘 다 [math(1)]이상 [math(n)]이하의 수들이므로 [math(-(n-1) \leq b_i -b_j \leq (n-1))]. 이 범위에는 [math(n)]의 배수가 [math(0)]뿐이므로 [math(b_i = b_j)]. 즉, 모순)

그러므로 [math(aS)]의 원소들을 [math(n)]으로 나눈 나머지는 [math(S)]의 원소들의 재배열이 된다.

따라서 [math(S)]의 모든 원소의 곱과 [math(aS)]의 모든 원소의 곱은 [math(n)]으로 나눈 나머지가 같다.

[math( b_1\cdots b_{\varphi\left(n\right)} \equiv a^{\varphi\left(n\right)}b_1\cdots b_{\varphi\left(n\right)} \left(\text{mod} ~n\right))]

[math( \therefore ~ a^{ \varphi \left( n \right) } \equiv 1 \left( \text{mod}~ n \right) )]


2.1.1. 다른 증명[편집]


[math(n)] 이하의 자연수중 [math(n)]과 서로소인 수만 모아놓은 집합을 [math(S)]라 하자.
정의에 의해 [math(S)]의 원소의 개수는 [math( \varphi (n) )]이다.

그러면, 자명하게 [math(S)]는 [math(\bmod n)] 곱셈군을 이루고, 라그랑주 정리에 의해 [math(|S:\langle a\rangle||\langle a\rangle | = |S|=\varphi (n))]로 [math(a)]의 위수는 [math(\varphi(n))]의 약수이다. 따라서, [math(a^{\varphi(n)})]는 곱셈의 항등원 [math(1)]이 된다.


2.2. 응용[편집]


오일러 정리는 거듭제곱의 마지막 세 자리 수를 구하는 데 자주 사용된다. 예를 들어 [math(7^{2016})]의 마지막 세 자리 수를 구하고 싶을 때, [math(\varphi \left( 1000 \right) = 400)]이므로 [math(7^{400} \equiv 1 \left(\text{mod}~1000 \right))]가 성립함을 이용하면, [math(7^{2016} \equiv \left( 7^{400} \right)^5 \times 7^{16} \left( \text{mod}~1000 \right))]에 의해 [math(7^{16})]을 [math(1000)]으로 나눈 나머지를 구하면 된다.[1]


2.3. 기타[편집]


오일러 정리는 대표적인 공개키 암호화 방식 중 하나인 RSA의 가장 중요한 이론이 되는 정리다.


3. 동차함수에 대한 오일러 정리[편집]


Analysis · Calculus


[ 펼치기 · 접기 ]
실수와 복소수
실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수
함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속
함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사
수열·급수
수열 · 급수(멱급수 · 테일러 급수(일람) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분
미분 · 도함수(도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분
적분 · 정적분(예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분
편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식
미분방정식(풀이) · 라플라스 변환
측도론
측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석
코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석
공간
위상벡터공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소
수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수
C*-대수 · 폰 노이만 대수
정리
한-바나흐 정리 · 스펙트럼 정리
이론
디랙 델타 함수(분포이론)
조화해석
푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야
해석기하학 · 미분기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학(경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타
퍼지 논리




함수 [math(f(x_k))]가 [math(x_k)]에 대한 [math(n)]차 동차함수이면, 다음이 성립한다.
[math(\displaystyle \sum_{k}{ x_k \frac{ \partial f }{ \partial x_k } } = nf )]


3.1. 오일러 정리의 미분[편집]


n차 동차 함수에 대한 오일러 정리는 다음과 같다.
[math(\displaystyle x\frac{ \partial f}{ \partial x} + y\frac{ \partial f}{ \partial y} = nf(x,y) )]
이제 [math(n)]차 동차 함수의 정의를 사용하여, 오일러 정리가 연쇄 법칙을 따르는 것을 확인할 수 있다. 임의의 실수 [math(\lambda)]를 가정할때, [math(n)]차 동차 함수는 다음과 같다.

[math(f(\lambda x,\lambda y) = \lambda^n f(x,y))]

양측에 대해 미분할때, 왼쪽 식에 연쇄 법칙을 적용하자. [math(u=\lambda x, v=\lambda y)]로 치환하여 [math(f(\lambda x,\lambda y)=f(u,v))]를 가정하면,

[math(\dfrac{\partial f}{\partial u} \dfrac{{\rm d}u}{{\rm d}\lambda} +\dfrac{\partial f}{\partial v} \dfrac{{\rm d}v}{{\rm d}\lambda} = n\lambda^{n-1}f(x,y))]

그러므로,

[math(\displaystyle x\frac{ \partial f}{ \partial u} + y\frac{ \partial f}{ \partial v} = n\lambda^{n-1}f(x,y) )]


4. 기하학에서의 오일러 정리[편집]


파일:나무위키상세내용.png   자세한 내용은 오일러 삼각형 정리 문서를 참고하십시오.



파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-10 10:29:25에 나무위키 오일러 정리 문서에서 가져왔습니다.

[1] 물론 이는 [math(7^2=49=50-1)]임을 이용해서 이항정리를 통해 간략화시키면 된다.