완비성

최근 편집일시 :

Analysis · Calculus


[ 펼치기 · 접기 ]
실수와 복소수
실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수
함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속
함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사
수열·급수
수열 · 급수(멱급수 · 테일러 급수(일람) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분
미분 · 도함수(도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분
적분 · 정적분(예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분
편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식
미분방정식(풀이) · 라플라스 변환
측도론
측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석
코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석
공간
위상벡터공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소
수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수
C*-대수 · 폰 노이만 대수
정리
한-바나흐 정리 · 스펙트럼 정리
이론
디랙 델타 함수(분포이론)
조화해석
푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야
해석기하학 · 미분기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학(경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타
퍼지 논리



1. 개요
2. 정의
2.1. 실수집합
2.2. 거리공간
3. 예시
4. 성질
4.1. 완비화



1. 개요[편집]


수학에서 완비성은 어떤 공간이 '빈 틈 없이 메워져 있음'을 의미한다. 완비성을 갖는 공간 안에서는 극한을 다룰 수 있어 공간 및 공간에서 정의된 함수를 분석하는 데에 해석적 도구를 활용할 수 있다.

2. 정의[편집]



2.1. 실수집합[편집]


실수열 [math(\{a_n\})]이 [math(m, n\to\infty)]에 따라 [math(|a_m-a_n|\to0)]을 만족시키면 수열 [math(\{a_n\})]을 코시 수열(cauchy sequence)라고 한다. 즉, 코시 수열 [math(\{a_n\})]은 임의의 [math(\epsilon>0)]에 대하여
[math(N<m, n \Longrightarrow |a_m-a_n|<\epsilon)]
을 만족시키는 자연수 [math(N)]이 존재하는 수열이다. 이는 항 사이의 거리가 임의의 크기보다 가까워짐을 의미한다.

실수의 완비성은 임의의 코시열 [math(\{a_n\})]의 극한 [math(\alpha\in\mathbb{R})]가 존재함을 의미한다. 실수의 완비성은 몇 가지 동치 명제를 갖는다.
  1. 코시 실수열은 수렴한다.
  2. 위로(아래로) 유계인 집합은 상한(하한)을 갖는다.
  3. (아르키메데스 성질) 임의의 양수 [math(a)]와 실수 [math(b)]에 대하여 [math(na>b)]를 만족시키는 자연수 [math(n)]이 존재한다.

2.2. 거리공간[편집]


거리함수 [math(d:X\times X\to[0,\infty)]가 주어진 거리공간 [math((X, d))]에 대하여 점렬 [math(\{a_n\})]이 [math(m, n\to\infty)]에 따라 [math(d(x_m,x_n)\to 0)]을 만족시키면 점렬 [math(\{a_n\})]을 거리공간 [math(X)]의 코시열이라고 한다. 즉, 코시열 [math(\{a_n\})]은 임의의 [math(\epsilon>0)]에 대하여
[math(N<m, n \Longrightarrow d(a_m-a_n)<\epsilon)]
을 만족시키는 자연수 [math(N)]이 존재하는 점렬이다.

3. 예시[편집]


  • 유리수 집합 [math(\mathbb{Q})]는 완비성을 갖지 않는다. 집합 [math(S=\{x\in\mathbb{Q}:x^2<2\})]는 임의의 [math(x\in S)]에 대하여 [math(x<2)]이므로 위로 유계인 집합이지만 [math(\sup S=\sqrt{2}\notin S)]이다.
  • 복소수 집합 [math(\mathbb{C})]는 완비성을 갖는다. 복소수 [math(z=x+iy(x,y\in\mathbb{R}))]에 대하여 복소수의 크기 [math(|z|=\sqrt{x^2+y^2})]는 거리 [math(|z-w|)]를 유도한다. 코시 복소수열 [math(\{z_n\})]에 대하여 [math(z_n=x_n+iy_n)]이라 하면 [math(m, n\to\infty)]에 따라 [math(\sqrt{(x_m-x_n)^2+(y_m-y_n)^2}\to0)]이므로 [math(|x_m-x_n|, |y_m-y_n|\to0)]이다. 실수의 완비성에 의해 두 실수열 [math(\{x_n\}, \{y_n\})]은 각각 극한 [math(x, y)]를 갖고, [math(z_n \to z=x+iy)]이다.
  • 닫힌 구간 [math([0, 1])] 위에서 리만 적분 가능한 함수 중 차의 리만 적분이 [math(0)]인 두 함수를 같은 함수로 다루는 공간 [math(R[0,1])]은 거리
}}}가 부여된 거리 공간이다. [math(I=[0,1]\cap\mathbb{Q}=\{r_1, r_2\ldots\})]에 대하여 [math(I_n=\{r_1,\ldots r_n\})]이라 할 때, 집합 판별함수 [math(1_{I_n})]은 유한 개의 불연속 점을 가져 리만 적분 가능하지만 함수열 [math(\{I_n\})]의 극한 함수인 [math(1_I)]는 모든 [math([0,1])]에서 불연속이므로 리만 적분 불가능하다. 따라서 [math(\mathcal{R}[0,1])]은 완비성을 갖지 않는다.
  • 닫힌 구간 [math([0, 1])] 위에 르베그 측도 [math(m)]이 부여되었을 때, [math(L^1([0,1],m))]은 완비 거리 공간이다.

4. 성질[편집]



4.1. 완비화[편집]


거리 공간 [math((X, d))]의 코시열의 집합을 [math(\mathcal{X})]라 할 때, 삼각부등식과 실수의 완비성에 의해 [math(\overline{d}(x_n, y_n)=\lim_{n\to\infty}d(x_n, y_n))]로 정의된 함수 [math(\overline{d}:\mathcal{X\times X}\to [0,\infty))]는 [math(\mathcal{X})]의 유사 거리함수이다. 유사 거리 공간 [math(\left(\mathcal{X}, \overline{d}\right))]에 동치 관계 [math(\{a_n\}\sim\{b_n\}\Leftrightarrow \overline{d}\left(\{a_n\},\{b_n\}\right)=0)]를 부여할 때, 동치류 [math(\overline{X}=\mathcal{X}/\sim)]는 [math(X)]를 조밀한 부분집합으로 갖는 완비 거리 공간이다.
파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-08 01:22:50에 나무위키 완비성 문서에서 가져왔습니다.