균등수렴

덤프버전 :

Analysis · Calculus


[ 펼치기 · 접기 ]
실수와 복소수
실수(실직선 · 아르키메데스 성질) · 복소수(복소평면 · 극형식 · 편각) · 근방 · 유계 · 콤팩트성 · 완비성
함수
함수 · 조각적 정의 · 항등함수 · 역함수 · 멱함수 · 다변수함수(동차함수 · 음함수) · 다가 함수 · 함수의 그래프 · 좌표계 · 닮은꼴 함수 · 극값 · 볼록/오목 · 증감표
초등함수(대수함수 · 초월함수 · 로그함수 · 지수함수 · 삼각함수) · 특수함수 · 범함수(변분법 · 오일러 방정식) · 병리적 함수
극한·연속
함수의 극한 · 수열의 극한 · 연속함수 · ε-δ 논법 · 수렴(균등수렴) · 발산 · 부정형 · 점근선 · 무한대 · 무한소 · 0.999…=1
중간값 정리 · 최대·최소 정리 · 부동점 정리 · 스털링 근사
수열·급수
수열 · 급수(멱급수 · 테일러 급수(일람) · 조화급수 · 그란디 급수(라마누잔합) · 망원급수(부분분수분해)) · 그물
오일러 수열 · 베르누이 수열 · 월리스 곱
단조 수렴 정리 · 슈톨츠-체사로 정리 · 축소구간정리 · 급수의 수렴 판정 · 리만 재배열 정리 · 바젤 문제 · 파울하버의 공식 · 오일러-매클로린 공식 · 콜라츠 추측미해결
미분
미분 · 도함수(도함수 일람) · 곱미분 · 몫미분 · 연쇄 법칙 · 임계점(변곡점 · 안장점) · 매끄러움
평균값 정리(롤의 정리) · 테일러 정리 · 역함수 정리 · 다르부 정리 · 로피탈 정리
립시츠 규칙 · 뉴턴-랩슨 방법 · 유율법
적분
적분 · 정적분(예제) · 스틸체스 적분 · 부정적분(부정적분 일람) · 부분적분(LIATE 법칙 · 도표적분법 · 예제) · 치환적분 · 이상적분(코시 주요값)
미적분의 기본정리 · 적분의 평균값 정리
리시 방법 · 2학년의 꿈
다변수·벡터 미적분
편도함수 · 미분형식 · · 중적분(선적분 · 면적분 · 야코비안) ·야코비 공식
라그랑주 승수법 · 오일러 동차함수 정리 · 선적분의 기본정리 · 스토크스 정리(발산 정리 · 그린 정리변분법
미분방정식
미분방정식(풀이) · 라플라스 변환
측도론
측도 · 가측함수 · 곱측도 · 르베그 적분 · 절대 연속 측도 · 라돈-니코딤 도함수
칸토어 집합 · 비탈리 집합
복소해석
코시-리만 방정식 · 로랑 급수 · 유수 · 해석적 연속 · 오일러 공식(오일러 등식 · 드 무아브르 공식) · 리우빌의 정리 · 바이어슈트라스 분해 정리 · 미타그레플레르 정리
함수해석
공간
위상벡터공간 · 노름공간 · 바나흐 공간 · 힐베르트 공간 · 거리공간 · Lp 공간
작용소
수반 작용소 · 에르미트 작용소 · 정규 작용소 · 유니터리 작용소 · 컴팩트 작용소
대수
C*-대수 · 폰 노이만 대수
정리
한-바나흐 정리 · 스펙트럼 정리
이론
디랙 델타 함수(분포이론)
조화해석
푸리에 해석(푸리에 변환 · 아다마르 변환)
관련 분야
해석기하학 · 미분기하학 · 해석적 정수론(1의 거듭제곱근 · 가우스 정수 · 아이젠슈타인 정수 · 소수 정리 · 리만 가설미해결) · 확률론(확률변수 · 중심극한정리) · 수치해석학 · 카오스 이론 · 분수계 미적분학 · 수리물리학 · 수리경제학(경제수학) · 공업수학
양-밀스 질량 간극 가설미해결 · 나비에 스토크스 방정식의 해 존재 및 매끄러움미해결
기타
퍼지 논리



1. 개요
2. 점별 수렴
3. 균등 수렴
4. 예고로프 정리
5. 기타



1. 개요[편집]


Gleichmäßige Konvergenz /

카를 바이어슈트라스가 고안한 개념으로, 고른 수렴 또는 평등 수렴이라고도 한다.


2. 점별 수렴[편집]


집합 [math(X)]와 거리공간 [math(\left(Y, d\right))]가 있을 때, [math(X)]에서 [math(Y)]로 가는 함수들의 열 [math(\left\{ f_n \right\})]을 생각해보자. 이 때, 일반적인 수열과 마찬가지로 [math(\left\{ f_n \right\})]이 "수렴"하는 경우를 생각해볼 수 있을 것이다.

수렴한다면 무엇에 수렴할까? 함수들의 수열이니 어떤 함수에 수렴하는 경우를 생각해볼 수 있을 것이다. 그렇다면, 함수에 수렴하는 것이 도대체 무엇일까?

[math(f_n(x))]는 [math(x)]를 고정시켜서 보면 [math({ f_n(x) })]이 [math({ n })]에 따라 변하는 "값"의 수열이 된다. 그렇다면 실수에서 정의된 수열과 마찬가지로 각각의 수열이 수렴하는 경우를 생각해볼 수 있다. 따라서 [math(x)]에 대응되는 수렴값이 존재하고, 우리는 그것을 [math({ g(x) })]라고 부를 수 있을 것이다. 즉, [math(f_n(x) \overset{n\to \infty}{\longmapsto} {g(x)})]이다. 그렇다면, [math(X)]에 속하는 모든 [math(x)]에 대해서 수열 [math(\left\{ f_n(x) \right\}_{n=1}^{\infty})]가 수렴할 때, [math(f_n \mapsto g)]라고 쓸 수 있을 것이다. 이렇게 생각해보면 함수의 수열 [math(\left\{ f_n \right\})]은 [math({ g })]에 수렴하는 것이다. 이런 방식으로 함수가 수렴하는 것은 각각의 점 [math({x})]마다 수열 [math(\left\{ f_n(x) \right\})]가 수렴하는 것이기 때문에 점마다 수렴 또는 점별 수렴(Pointwise Convergence)라고 한다.

이렇게 하면 함수의 수열이 수렴하는 것이 정의된다. 그런데 점별 수렴할 때는 [math(\left\{ f_n \right\})]의 중요한 성질이 [math({g})]에 보존되지 않는다는 심각한 문제점이 발견되었다.

예를 들어보자. [math(f_n(x) = \cos^{2n}(\pi x))][1]라고 할 때, [math(f(x) = 1 \left(x \in \mathbb{Z} \right),\ f(x) = 0 \left(x \notin \mathbb{Z} \right))][2]이다. 즉, [math({f_n(x)})]는 모두 연속 함수인데 [math(g(x))]는 [math(x \in \mathbb{Z})]에서 불연속이다! 그 외에도 미분 가능성, 적분 가능성 등등이 전혀 보존되지 않기도 하며, 설령 가능하다 하더라도 그 미분계수 및 적분값이 일치하지 않을 수 있다는 사실이 밝혀졌다.[3]인 함수 [math(\displaystyle f_{n}(x)=\begin{cases} n-n^2x & x \in (0, \frac{1}{n}] \\ 0 & x \in (\frac{1}{n}, 1]\end{cases})]를 정의한 뒤, 이 함수의 수렴을 확인해보면, 이 함수는 [math(g=0)]으로 점별수렴한다. 하지만, [math(\displaystyle\int_{0}^{1}{\lim_{n\to 0}{f_{n}(x)dx}}=\int_{0}^{1}{g(x)dx}=0\ne\frac{1}{2}=\lim_{n\to 0}{\int_{0}^{1}{f_{n}(x)dx}})]임은 쉽게 알 수 있다.] 따라서 더 강력한 조건이 필요한데... 이때 나타난 것이 바로 카를 바이어슈트라스가 제안한 균등 수렴의 개념이다.


3. 균등 수렴[편집]


균등 수렴의 개념을 생각하기에 앞서 점별 수렴의 개념을 다시 생각해보자. 점별 수렴은 원래 수열을 정의역의 각각의 점에 대한 수열로 나눠서 각 수열이 수렴하면 원래 수열이 수렴값의 함수에 수렴한다고 생각하는 개념이다. 너무나도 우회하는 개념이 아닌가? 우리가 원하는 것은 각각의 수열의 수렴이 아니라 함수 자체의 수렴이었다. 실수열이 수렴하는 것의 정의는 무엇인가? [math(\left\{a_n\right\})]이 있을 때, 임의의 양수 [math(\epsilon)]이 주어지면 충분히 큰 자연수 [math(N)]이 있어서 [math(n\ge N)]일 때 [math(\left\vert {a_n}-\alpha \right\vert < \epsilon)]이라는 것이었다. 균등 수렴도 이와 비슷한 방식으로 정의한다. 즉, 임의의 [math(\epsilon >0)]을 잡을 때, 자연수 [math(N)]이 있어서 [math(n\ge N)]이면 정의역 [math(X)]에 속하는 모든 [math(x)]에 대해 [math(d\left(f_n(x), g(x) \right) < \epsilon)]이 성립하는 것을 [math(\left\{f_n\right\})]이 [math(g)]에 균등 수렴한다고 정의한다. 이를 다시 쓰면,
[math(\forall \epsilon >0, \exists N \in \mathbb{N} \ \text{s.t.} \ \forall x\in X, \ n\geq N \Longrightarrow d\left(f_n(x), g(x) \right) < \epsilon)]
이라는 것이다. 이는 곧
[math(\displaystyle \forall \epsilon >0, \exists N \in \mathbb{N} \ \text{s.t.} \ n\geq N \Longrightarrow \sup_{x\in X} \ d\left(f_n(x), g(x) \right) \leq \epsilon)]
이라는 말과 같다. 따라서 함수열 [math(\left\{f_n\right\})]이 [math(g)]로 균등수렴한다는 것은 실수열 [math(\displaystyle \left(\sup_{x\in X} d\left(f_n(x), g(x) \right) \right)_{n\in \mathbb{N}})]이 0으로 수렴한다는 말이 된다.

그리고 이를 기호로는 [math(f_n \rightrightarrows g)]와 같이 나타낸다.

놀랍게도, 균등 수렴하는 함수열은 각 항이 연속 함수일 때 극한 함수도 연속 함수이며, 각 항이 적분 가능하면 극한 함수도 적분 가능하고, 심지어 이 경우에는 각 항의 적분의 극한이 극한 함수의 적분이라는 것까지도 알려져 있다! 다만, 미분가능성의 경우에는 좀 상황이 다르게 돌아가는데, 다른 성질과 비슷하게 조건을 줘도 극한 함수가 미분 가능하지 않을 경우가 생긴다. [4]


4. 예고로프 정리[편집]


유한 측도를 갖는 집합에서 분해 가능 거리공간[5]으로 가는 함수열이 거의 모든 점에서 점별수렴하면, '거의' 균등수렴한다. 즉, 측도공간 [math((X,\Sigma,\mu))]과 분해 가능 거리공간 [math((Y,d))]가 주어졌다고 하자. 이 때, [math(X)]의 유한측도를 갖는 부분집합 위에서 정의된 함수열 [math(f_{n}:E\to Y)]가 [math(f)]로 거의 모든 점에서 점별수렴하면, 임의의 양수 [math(\epsilon)]에 대하여, 적당한 가측집합 [math(F\subset E)]가 존재하여, [math(f_{n})]이 [math(F)] 위에서 [math(f)]로 균등수렴하고, [math(\mu (E-F)<\epsilon)]을 만족한다.


5. 기타[편집]


여담이지만 균등수렴은 그 정의상 거리공간일 때만 정의될 수 있지만, 균등수렴이라는 성질이 지니는 편리성을 포기하지 못한 위상수학자들에 의해서 거리공간과 일반적인 위상공간의 관계 사이에 위치한 제3의 공간균등공간이라는 위상공간이 고안되게 된다. 이 균등공간은 거리위상이 주어지지 않아서 거리를 측정할 수는 없으나, 두 점이 서로 근접한지 아닌지를 구분할 수 있는 정도의 성질은 부여된다. 즉, 다음과 같은 관계도가 성립한다.

  • 거리공간 [math(\subset)] 균등공간 [math(\subset)] 위상공간

균등공간은 위상공간의 하위분류인 만큼 표준적인 위상을 줄 수 있으며, 반대로 거리공간은 균등공간의 하위분류이므로 균등공간의 구조가 그대로 부여되게 된다.

또한 거리공간이 아닌 균등공간의 경우도 고려할 수 있는데, 대표적으로 콤팩트화된 [math(T_2)] 공간이 있다.


파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는
문서의 r28 판{{{#!wiki style="display: inline; display: 2.2;"
, 2.2번 문단}}}에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r28 판{{{#!wiki style="display: inline; display: 2.2;"
, 2.2번 문단}}} (이전 역사)
문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)

문서의 r 판{{{#!wiki style="display: inline; display: none;"
, 번 문단}}} (이전 역사)




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-11-14 17:25:05에 나무위키 균등수렴 문서에서 가져왔습니다.

[1] 편의 상 [math(f_n : \mathbb{R} \mapsto \mathbb{R})]라고 하자.[2] [math(g(x))]가 이렇게 되는 이유는 [math({ x })]가 정수이면 [math(\cos^2(\pi x) = 1)]이지만, 정수가 아니면 [math(0 \le \cos^2(\pi x) < 1)]이기 때문이다.[3] 자세한 예시는 해석학 교재를 찾아보자.
간단한 예시를 들자면 [math(f_{n}:\left(0, 1\right]\mapsto\mathbb{R})
[4] 하지만 비슷한 정리는 있다. 이 정리는 요구하는 것이 원래 수열이 균등 수렴할 것이 아니라 각 항의 미분이 균등수렴할 것이며, 여기에 정의역의 한 점 [math(x_0)]에서 [math(\left\{f_n(x_0)\right\})]이 수렴할 것까지 조건으로 요구한다. 이 모든 조건을 만족할 경우 [math(\left\{f_n \right\})]가 균등 수렴하고 각 항의 미분의 극한이 극한 함수의 미분이다.[5] 가산 조밀집합을 갖는 거리공간. 예컨데 [math(\mathbb{R})]은 거리공간이고, [math(\mathbb{Q})]가 가산 조밀집합이므로, [math(\mathbb{R})]은 분해 가능 거리공간이다.