최대공약수

덤프버전 :

파일:다른 뜻 아이콘.svg
은(는) 여기로 연결됩니다.
RADWIMPS의 노래에 대한 내용은 最大公約数 문서
最大公約数번 문단을
最大公約数# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
, {{{#!html }}}에 대한 내용은 문서
#s-번 문단을
#s-번 문단을
# 부분을
# 부분을
참고하십시오.








1. 개요
2. 찾는 법
3. 성질
4. 증명
5. 관련 문서


1. 개요[편집]


· greatest common divisor(factor), GCD

정수의 성질 중 하나. 초등학교 5학년 때 나오며, 약수(divisor or factor)에 대해서 먼저 배운 뒤, 바로 배우게 될 것이다. 먼저 공약수(common divisor or common factor)란, 이름에서 알 수 있듯이 두 수, 혹은 그 이상의 여러 수의 공통인 약수라는 뜻이다. 최대공약수 (greatest common divisor) 는 당연히 공약수 중 가장 큰 것. 두 수 [math(a,b)]의 최대공약수를 수학적 기호로 표시하면, [math(\gcd\left(a,b\right))]이며,[1] 더욱 줄여서 [math(\left(a,b\right))]로 표기하기도 한다.[2] 특히, [math(\gcd\left(a,b\right)=1)]이면 두 수 [math(a,b)]는 서로소(relatively prime, coprime)라고 한다. 중1 입학하면 소인수분해랑 연계해서 더 심화된 과정으로 최소공배수랑 같이 또 나온다. 최대공약수ㆍ최소공배수는 약분과 통분, 분모가 다른 분수의 계산, 분수의 곱셈ㆍ나눗셈, 6학년 때 배우는 비의 성질, 비례식의 성질, 중1 정수와 유리수의 혼합계산, 방정식ㆍ부등식의 풀이 등 다방면으로 나온다.

가끔 최소공약수라고 잘못 부르는 경우가 있는데, 최소공약수는 무조건 1이므로 논할 가치도 없다. 반대로 최대공배수도 결국 무한으로 발산하므로 논할 가치 자체가 없다.


2. 찾는 법[편집]


예시로 두 수 12, 18의 공약수 및 최대공약수를 찾고 싶다고 하자. 간단하게, 두 수의 약수를 모두 나열한다.

12: 1, 2, 3, 4, 6, 12
18: 1, 2, 3, 6, 9, 18

여기서 위아랫줄 모두 같이 있는 숫자가 공약수가 된다. 즉, 이 경우에는 1, 2, 3, 6이 공약수가 된다. 최대공약수는, 찾은 공약수 중 가장 큰 것, 즉 이 경우에는 6이 최대공약수가 된다. 같은 방법으로 세 수 이상의 최대공약수도 구할 수 있다.

하지만 두 수의 약수를 찾는 게 어렵다면 어떻게 될까? 2015와 246의 최대공약수를 약수를 나열하는 방법으로 찾으려면 한참이 걸릴 것이다.[3] 이 문제를 해결하기 위한 방법이 바로 유클리드 호제법. 기원전에 발견된 이 방법은 놀랍게도 인류 최초의 알고리즘이라고 한다. 자세한 것은 항목 참조.

최소공배수 [math(\mathrm{lcm})]를 이용하는 방법도 있다. 최소공배수와 다음과 같은 관계가 성립한다:

[math(\gcd(a,\,b) = \dfrac{|ab|}{\mathrm{lcm}(a,\,b)})]

단, 최대공약수도 최소공배수도 모를 경우 순환논법이 될 수 있음을 주의해야 한다.

세 수 이상의 최대공약수를 구하려면 다음과 같이 함수를 계속 취해주면 된다.

세 수 [math(a,\,b,\,c)]에 대해서

[math(\gcd(a,\, b,\, c) = \gcd(\gcd(a,\, b),\, c) \equiv \dfrac{| abc |}{\mathrm{lcm}\left( \frac{| ab |}{\mathrm{lcm}(a,\,b)},\, c \right)})]

이 성립한다.


해석적인 방법[4]으로는 이렇게 된다.

[math(\displaystyle \gcd(x,\,y) = \int_{n|x} \int_{1}^{x} e^{\frac{2}{x}i \pi ty} \frac{c_n(t)}{n}\ \mathrm{d}\lfloor t \rfloor \mathrm{d}\lfloor n \rfloor)]

여기서 [math(c_n(t))]는 라마누잔합 함수이다.

3. 성질[편집]


두 정수 [math(a,b)]에 대해서,
  1. [math(\gcd\left(a,b\right)\geq1)]
  2. [math(\gcd\left(a,b\right)=\gcd\left(\left|a\right|,\left|b\right|\right))]
  3. [math(\gcd\left(a,0\right)=\left|a\right|)]
  4. [math(d=\gcd\left(a,b\right))]라 하면, [math(\gcd\left(\frac{a}{d},\frac{b}{d}\right)=1)]
  5. 임의의 정수 [math(k)]에 대하여, [math(\gcd\left(a,b\right)=\gcd\left(a+kb,b\right))]
  6. 임의의 양의 정수 [math(a,b)]에 대해서, [math(ax+by=\gcd\left(a,b\right))]를 만족하는 정수 [math(x,y)]가 존재한다.[5]


4. 증명[편집]


  1. [math(1\mid a,1\mid b)]이므로, 두 수의 최대공약수는 1보다 크거나 같다. 즉, [math(\gcd\left(a,b\right)\geq1)].
  2. [math(x\mid a)]와 [math(x\mid -a)]는 동치이다. 그런데 [math(\left|a\right|)]는 [math(a)] 또는 [math(-a)]이므로 [math(a)]와 [math(\left|a\right|)]는 같은 약수를 갖는다. 마찬가지로, [math(b)]와 [math(\left|b\right|)]는 같은 약수를 갖는다. 따라서, [math(x)]가 [math(a)]와 [math(b)]의 공약수라는 것은 [math(\left|a\right|)]와 [math(\left|b\right|)]의 공약수라는 사실과 동치이다. [math(\therefore\gcd\left(a,b\right)=\gcd\left(\left|a\right|,\left|b\right|\right))]
  3. 2번으로 부터, [math(\gcd\left(a,0\right)=\gcd\left(\left|a\right|,0\right))]이다. [math(\left|a\right|\cdot0=0)]이므로, [math(\left|a\right|\mid0)]. 또한, [math(\left|a\right|\mid\left|a\right|)]이므로, [math(\left|a\right|)]는 [math(\left|a\right|)]와 0의 공약수이다. 그러므로 [math(\left|a\right|\leq\gcd\left(\left|a\right|,0\right))]이다. 그런데 [math(\gcd\left(\left|a\right|,0\right)\mid\left|a\right|)]이므로, [math(\gcd\left(\left|a\right|,0\right)\leq\left|a\right|)]. 위 두 부등식으로 부터 [math(\gcd\left(\left|a\right|,0\right)=\left|a\right|)]. 다시 한번 2번으로 부터, [math(\gcd\left(a,0\right)=\gcd\left(\left|a\right|,0\right)=\left|a\right|)].
  4. [math(a=dm, b=dn)]라 하면, [math(\gcd\left(\frac{a}{d},\frac{b}{d}\right)=\gcd\left(m,n\right))]이다. 양의 정수 [math(p)]가 [math(p\mid m,p\mid n)]를 만족한다고 하자. 그러면 [math(m=pe,n=pf)]를 만족하는 정수 [math(e,f.)]가 존재한다. 따라서, [math(a=dpe,b=dpf)]이고 [math(dp)]는 [math(a,b)]의 공약수이다. 한편, [math(d)]는 최대공약수이므로, [math(d\geq dp)]. 따라서 [math(p\leq1)]이고 [math(p=1)]일 수밖에 없다. 이로써 보이고자 하는 바가 증명되었다.
  5. 만약 [math(x)]가 [math(a,b)]의 공약수라면, [math(x\mid a,x\mid b)]이다. 따라서 [math(x\mid kb)]이고, [math(x\mid a+kb)]이다. 따라서 [math(x)]는 [math(a+kb)]와 [math(b)]의 공약수이다.
    역으로, [math(x)]가 [math(a+kb)]와 [math(b)]의 공약수라면, [math(x\mid a+kb, x\mid b)]이다. 따라서 [math(x\mid kb)]이고, [math(x\mid\left(\left(a+kb\right)-kb\right)=a)]이다. 즉, [math(x)]는 [math(a,b)]의 공약수이다. 따라서 [math(a,b)]와 [math(a+kb,b)]는 같은 공약수 집합을 가지므로 최대공약수도 같아야 한다.
  6. 집합 [math(A=\left\{ax+by>0|x,y\in Z\right\})]를 생각하자. 집합 [math(A)]는 자연수의 부분집합이고 공집합이 아니므로 well-ordering 원리에 의해 가장 작은 원소가 존재한다. 이를 [math(d)]라 하면 적당한 정수 [math(x,y)]에 대해 [math(d=ax+by)]이다. 여기서 [math(d)]가 최대공약수임을 보이면 증명이 끝난다.
    [math(d>0)]이므로, 나눗셈 정리에 의하여 [math(a=qd+r,\,0\leq r0)]이면 [math(r\in A)]이고, [math(r한편 [math(e)]가 [math(a,b)]의 공약수라면 [math(e\mid\left(ax+by\right))]이고,[6] [math(ax+by=d)]이므로 [math(e\mid d)], 즉 [math(e\leq d)]이다. 이는 곧 [math(d)]가 최대공약수임을 보인다.


5. 관련 문서[편집]




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-19 01:07:55에 나무위키 최대공약수 문서에서 가져왔습니다.

[1] gcd는 Greatest Common Divisor, 영어로 최대공약수의 약자이다.[2] 다만 [math(\left(a,\,b\right))]은 순서쌍이나 개구간 표현과 겹치므로 사용에 주의할 필요가 있다. 사실 정수론은 실해석학과 분야를 달리 하므로 혼동되는 경우가 거의 없다. 해석학과 정수론의 콜라보인 해석적 정수론에서는 혼동할 여지는 있지만...[3] 이 점 때문에 특수함수에 속한다. 참고로 최대공약수/최소공배수는 교과과정상 가장 처음으로 접하는 특수함수이다.[4] 복소수까지 범위가 확장된다.[5] 베주 항등식이라고 불리는 정리이다. 자세한 증명과 내용은 베주 항등식 문서에서 볼 수 있다. 만약 a와 b가 서로소이면, [math(ax+by=1)]를 만족하는 정수 [math(x,y)]가 존재함을 의미한다. 역도 성립한다.[6] 5번 성질 참조