커 계량

덤프버전 :




[math(\displaystyle {\color{white} G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}})]
아인슈타인 방정식의 해
[ 펼치기 · 접기 ]
특수 상대론
민코프스키 시공간
선형 근사
(선형화 중력)
만유인력(푸아송 방정식)
중력파
천체 해
(블랙홀)

회전하지 않음
회전함
대전되지 않음
슈바르츠실트 해
커 해
대전됨
라이스너-노르드스트룀 해
커-뉴먼 해
우주 해
FLRW 해



1. 개요
2. 보이어-린드퀴스트 좌표계
3. 주요 특징
3.1. 틀끌림 효과
3.2. 작용권
3.3. 지평선


1. 개요[편집]


일반 상대성 이론에서, 빠르게 회전하는 (각운동량이 큰) 천체의 중력장을 기술하기 위해서는 (각운동량 방향의) 축 대칭을 띠지만, 슈바르츠실트 해와 같은 구형 대칭은 띠지 않는 시공간을 생각해야 한다. 이러한 조건을 만족시키는 아인슈타인 방정식의 엄밀해로 커 해(Kerr solution)와 커-뉴먼 해(Kerr-Newman solution)가 있다. 커 해는 빠르게 회전하는 천체를, 커-뉴먼 해는 거기에 대전량도 큰 천체를 표현한다.

아인슈타인 방정식의 구형 대칭 해를 구하는 것은 어려운 일이 아니다. 슈바르츠실트 해는 1915년(아인슈타인 방정식이 발표되고 한 달만에), 라이스너-노르드스트룀 해는 1916년 발견되었다. 이들은 구형 대칭을 만족시키는 유일한 해임을 버코프 정리(1922)가 말해주므로, 임의의 (회전하지 않는) 천체에 대응됨이 보장된다. 그러나 커 해와 커-뉴먼 해는 계산이 매우 복잡하며, 1963년이 되어서야 로이 커(Roy Kerr)가 커 해를 발견하였다.[kerr(1963)] 이후 1965년 뉴먼(Newman) 등이 커의 해에 전하량을 더하여 커-뉴먼 해가 완성되었다.[Newman(1965)] 문제는 버코프 정리와 같은 장치가 존재하지 않기 때문에 사실 일반적인 (회전하는) 천체에 적용될 수 있는 해인지는 알 수 없다는 것이다. 이들의 유효성은 오로지 "블랙홀"에 대해서만 보장되어 있다. 일반적인 천체가 커 해를 따르지 않는다는 증명은 없지만, 커 해가 유도되는 천체 모델이 발견된 적도 없다.

커 해와 커-뉴먼 해의 관계는 슈바르츠실트 해와 라이스너-노르드스트룀 해의 관계와 유사하다. 대전량에 의해 하나의 지평선이 더 발생한다. 여기에서는 커 해를 중심으로 다룬다.

2. 보이어-린드퀴스트 좌표계[편집]


슈바르츠실트 해라이스너-노르드스트룀 해슈바르츠실트 좌표계로 기술되듯, 커 해와 커-뉴먼 해는 보이어-린드퀴스트 좌표계(Boyer-Lindquist coordinates)로 기술된다. 주요 변수로는 천체의 질량 [math(M)]과 각운동량 [math(J)]가 있다. 보이어-린드퀴스트 좌표계 [math((t, r, \theta, \phi))] 하에 커 해는 계량이 다음과 같이 표현된다.


[math(\displaystyle ds^2 = -\frac{\Delta}{\Sigma}(cdt - a\,\mathrm{sin}^2\theta\,d\phi)^2 + \frac{\mathrm{sin}^2\theta}{\Sigma}\biggl((r^2 + a^2)\,d\phi - a c\,dt \biggr)^2 + \frac{\Sigma}{\Delta}dr^2 + \Sigma\,d\theta^2)]

[math(\displaystyle a = \frac{J}{Mc}\,,\quad \Delta = r^2 - r_sr + a^2 \,,\quad \Sigma = r^2 + a^2 \mathrm{cos}^2 \theta)]

커-뉴먼 해에서는 [math(\Delta = r^2 - r_sr + a^2 + r_Q^2)]이다.

여기에서 [math(\phi)]는 대칭축을 기준으로 한 각도, [math(t)]는 모든 것이 정지(stationary)해 있을 때의 시간이다. [math(r, \theta)]는 기하학적으로 분명한 대응이 어렵다. 슈바르츠실트 시공간에서 [math(r)]은 2-구(2-sphere)의 면적으로 정의할 수 있으나, 커 계량에서는 2-구에 대응하는 계량 요소가 없어서 불가능하다.

이외에, 커 계량의 특징은 다음과 같다.

  • static하지 않다. 즉, 시간을 거꾸로 돌렸을 때([math(t \rightarrow -t)]) 다른 계량을 얻는데, 이는 다음 비대각성분이 존재하기 때문이다.


[math(\displaystyle g_{t\phi} = -ac\frac{r_s r\sin^2\theta}{\Sigma})]


이는 [math(g_{t\phi} = g_{\phi t})]이므로 상단의 전개식에 [math(1/2)]를 취한 것이다. 반면, [math(t)]와 [math(\phi)]를 동시에 뒤집으면 다시 커 계량을 얻는 것은 커 계량이 [math(\phi)] 방향으로 회전하고 있음을 보여준다.
  • stationary하다. 즉, 모든 계량 성분은 시간 [math(t)]에 독립적이다.
  • 점근적으로 평평하다(asymptotically flat). 즉 [math(r \rightarrow \infty)]일 때 커 계량은 민코프스키 계량이 된다.
  • [math(a = 0)]일 때, 즉 [math(J = 0)](각운동량이 0)일 때 커 해는 슈바르츠실트 해가 된다.
  • [math(a)]를 고정한 채 [math(M \rightarrow 0)]이라 두면 커 해는 타원체 좌표(ellipsoidal coordinates) 상의 평평한 시공간이 된다. 이는


[math(\displaystyle ds^2 = -c^2dt^2 + \frac{r^2 + a^2\cos^2\theta}{r^2 + a^2}dr^2 + (r^2 + a^2\cos^2\theta) d\theta^2 + (r^2 + a^2)\sin^2\theta d\phi^2)]


가 되기 때문이다. 여기에

[math(\displaystyle \begin{aligned} x&=\sqrt{r^2 + a^2}\sin\theta\cos\phi \\ y&=\sqrt{r^2 + a^2}\sin\theta\sin\phi \\ z&=r\cos\theta \end{aligned})]

라 설정하면 3차원 직교 좌표계를 얻는다.

아래에서는 자연 단위계를 사용하여 [math(G = c = 1)]이라 둔다.

3. 주요 특징[편집]



3.1. 틀끌림 효과[편집]


[math(g_{t\phi} \neq 0)]으로 인해, 입자의 궤도에 새로운 효과가 도입된다. [math(g_{\mu\nu})]가 [math(\phi)]에 독립적이므로 [math(p_{\phi})]는 보존되나,


[math(p^{\phi} = g^{\phi\mu}p_{\mu} = g^{\phi\phi}p_{\phi} + g^{\phi t}p_{t})]

가 된다. 또한


[math(p^{t} = g^{t\mu}p_{\mu} = g^{tt}p_{t} + g^{t\phi}p_{\phi})]

이다. 각운동량이 [math(0)], 즉 [math(p_{\phi}=0)]인 입자를 생각하자. 정지 질량이 [math(m \neq 0)]일 때 이 입자는


[math(\displaystyle p^t = m\frac{dt}{d\tau}, \quad p^{\phi} = m\frac{d\phi}{d\tau})]

이므로


[math(\displaystyle \frac{d\phi}{dt} = \frac{p^{\phi}}{p^t} = \frac{g^{\phi t}}{g^{tt}} \neq 0)]

를 얻는다. 이는 각운동량이 0이어도 입자가 천체에 대하여 회전함을 의미한다. 자유낙하하는 입자는 저마다 관성계를 갖고 다니므로, 이를 틀끌림 효과(frame-dragging effect)라고 한다.


3.2. 작용권[편집]


주어진 [math(r)]에 대하여 적도면 [math(\theta = \pi/2)]에 놓여, [math(\phi)] 방향으로만 움직이는, 즉 [math(r)]이 고정된 광자를 고려한다. 이 광자는 오로지 [math(d\phi, dt)]만을 0이 아닌 항으로 갖는다. [math(ds^2 = 0)]이므로, 다음을 얻는다.


[math(\displaystyle 0 = g_{tt}dt^2 + 2g_{t\phi}dtd\phi + g_{\phi\phi}d\phi^2)]

[math(\displaystyle \frac{d\phi}{dt} = -\frac{g_{t\phi}}{g_{\phi\phi}} \pm \left[\left(\frac{g_{t\phi}}{g_{\phi\phi}}\right)^2 - \frac{g_{tt}}{g_{\phi\phi}}\right]^{\frac{1}{2}})]

만약, [math(g_{tt} = 0)]이면 이 방정식의 해는


[math(\displaystyle \frac{d\phi}{dt} = 0)] 와 [math(\displaystyle \,\,\frac{d\phi}{dt} = -\frac{2g_{t\phi}}{g_{\phi\phi}})]

이다. 이 중 두번째 해는 [math(d\phi/dt)]가 [math(a)]와 부호가 같아 천체가 회전하는 방향과 같은 방향으로 발사된 광자를 의미한다. 첫번째 해는 반대쪽으로 발사된 광자로 처음에 좌표계 상에서 정지해 있음을 말해준다. 이처럼, 가장 빠른 광자조차도 천체의 회전방향과 반대쪽으로 발사했을 때 정지하는 것이 전부이므로, 그보다 느린 입자들은 천체와 같은 방향으로 진행할 수밖에 없게 된다. [math(g_{tt} = 0)]인 표면은, 커 시공간의 (사건의) 지평선보다 바깥에 위치하며, 작용권(ergosphere)이라 부른다. 작용권 내부의 입자들은 정지 상태를 유지하는 것이 불가능하다. 이 방정식을 풀면 작용권의 해는


[math(\displaystyle r_{\text{ergosphere}} = M + \sqrt{M^2 - a^2\cos^2\theta})]

임을 얻는다. 이 반지름 내부에서는 모든 광자와 입자는 천체와 함께 회전하게 된다.


3.3. 지평선[편집]


슈바르츠실트 시공간에서 지평선은 [math(g_{tt} = 0)] 및 [math(g_{rr} = \infty)]인 지점이었다. 커 시공간에서는 [math(g_{tt})]가 작용권을, [math(g_{rr} = \infty)]가 지평선을 각각 나타낸다.(여기에서는 이것이 지평선인 이유를 증명하지 않는다.) 즉 [math(\Delta = 0)]이라 두면


[math(\displaystyle r_{\text{horizon}} = M + \sqrt{M^2 - a^2})]

이 된다. 이로부터 커 시공간에서 작용권이 지평선보다 바깥에 위치함은 분명하다. 단, 양 극([math(\theta = 0)])에서는 작용권과 지평선이 접한다.
파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2024-02-26 15:12:47에 나무위키 커 계량 문서에서 가져왔습니다.

[kerr(1963)] Roy P. Kerr, "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics", Phys. Rev. Lett. 11 (1963) : 237-238 #[Newman(1965)] Newman, E. T., "Metric of a Rotating, Charged Mass", Journal of Mathematical Physics 6 (1965) : 918-919 즉시 다운로드 주의