양자 얽힘

덤프버전 :

분류


양자역학
Quantum Mechanics


[ 펼치기 · 접기 ]
배경
흑체복사 · 이중슬릿 실험 · 광전효과 · 콤프턴 산란 · 보어의 원자 모형 · 물질파 · 데이비슨-저머 실험 · 불확정성 원리 · 슈테른-게를라흐 실험 · 프랑크-헤르츠 실험
이론 체계
체계
플랑크 상수(플랑크 단위계) · 공리 · 슈뢰딩거 방정식 · 파동함수 · 연산자(해밀토니언 · 선운동량 · 각운동량) · 스핀(스피너) · 파울리 배타 원리
해석
코펜하겐 해석(보어-아인슈타인 논쟁) · 숨은 변수 이론(EPR 역설 · 벨의 부등식 · 광자 상자) · 다세계 해석 · 앙상블 해석 · 서울 해석
묘사
묘사(슈뢰딩거 묘사 · 하이젠베르크 묘사 · 디랙 묘사) · 행렬역학
심화 이론
이론
양자장론(비상대론적 양자장론) · 양자 전기역학 · 루프 양자 중력 이론 · 게이지 이론(양-밀스 질량 간극 가설 · 위상 공간) · 양자색역학(SU(3))
입자·만물이론
기본 입자{페르미온(쿼크) · 보손 · (둘러보기)} · 강입자(둘러보기) · 프리온 · 색전하 · 맛깔 · 아이소스핀 · 표준 모형 · 기본 상호작용(둘러보기) · 반물질 · 기묘체 · 타키온 · 뉴트로늄 · 기묘한 물질 · 초끈 이론(초대칭 이론 · M이론 · F이론) · 통일장 이론
정식화 · 표기
클라인-고든 방정식 · 디랙 방정식 · 1차 양자화 · 이차양자화 · 경로적분(고스트) · 파인만 다이어그램
연관 학문
천체물리학(천문학 틀 · 우주론 · 양자블랙홀) · 핵물리학(원자력 공학 틀) · 응집물질물리학 틀 · 컴퓨터 과학 틀(양자컴퓨터 · 양자정보과학) · 통계역학 틀 · 양자화학(물리화학 틀)
현상 · 응용
양자요동 · 쌍생성 · 쌍소멸 · 퍼텐셜 우물 · 양자 조화 진동자 · 오비탈 · 수소 원자 모형 · 쌓음 원리 · 훈트 규칙 · 섭동(스핀 - 궤도 결합 · 제이만 효과 · 슈타르크 효과) · 선택 규칙 · 변분 원리 · WKB 근사법 · 시간 결정 · 자발 대칭 깨짐 · 보스-아인슈타인 응집 · 솔리톤 · 카시미르 효과 · 아로노프-봄 효과 · 블랙홀 정보 역설 · 양자점
기타
군론 · 대칭성 · 리만 가설 · 매듭이론 · 밀도행렬 · 물질 · 방사선(반감기) · 라플라스의 악마 · 슈뢰딩거의 고양이(위그너의 친구) · 교재


1. 개요
2. 논쟁
3. 예제
4. 둘러보기


1. 개요[편집]



파일:SPDC_figure.png

양자 얽힘(Quantum Entanglement)은 양자역학의 중요한 현상으로, 두 개 이상의 양자 시스템이 서로 물리적으로 떨어져 있음에도 불구하고 놀라운 상호 의존성이 존재하는 현상이다. 이 현상은 양자 역학에서 특유한 원리로 이해되며, 일상 세계에서 경험하는 것과는 매우 다른 특성을 갖고 있다.

양자 얽힘은 두 입자가 먼 거리에 있어도 계속 연결되어 한 입자에 행해지는 작용이 다른 입자에게도 즉각적으로 영향을 미치게 하는 물리적 현상을 의미한다. 두 양자가 얽혀 있다면, 하나의 양자 상태가 변화하면 다른 양자 상태도 즉시 그에 반응하여 관련성을 보인다. 이 현상은 두 양자 사이의 정보 전달 없이 일어나기 때문에, 정보가 빛의 속도를 초과하여 전달되었다고 해석하면 안 된다. 따라서 이는 인과 관계에 기반한 전통적인 물리학과는 다른 새로운 현상으로 해석된다.

예를 들어, 두 입자를 일정한 양자상태에 두어 두 입자의 스핀이 항상 반대가 되도록 하자. (예를 들어 두 스핀의 단일항 상태.) 양자역학에 따르면, 측정하기 전까지는 두 입자의 상태를 알 수 없다. 하지만 측정을 한다면, 그 순간 한 계의 상태가 결정되고 이는 즉시 그 계와 얽혀 있는 다른 계의 상태까지 결정하게 된다. 이는 마치 정보가 순식간에 한 계에서 다른 계로 이동한 것처럼 보인다.

양자 얽힘이 이해되기 위해서는 "양자 상태"라는 개념을 이해해야 한다. 양자 상태는 양자 시스템의 특정한 물리적 성질을 설명하는데 사용되는 수학적인 표현이다. 예를 들어, 양자 비트(Quantum Bit, 또는 qubit)라고 불리는 양자 시스템은 양자 상태 0과 1을 동시에 가질 수 있다. 이러한 양자 비트들 간의 결합된 상태로 인해 양자 얽힘이 발생할 수 있다.

두 양자가 얽혀있는 상태로서 표현하면 다음과 같다. |A⟩와 |B⟩라는 두 양자의 상태를 다음과 같이 표현하면:

ψ⟩ = (α
0⟩ + β|1⟩) ⊗ (γ|0⟩ + δ|1⟩) = αγ|00⟩ + αδ|01⟩ + βγ|10⟩ + βδ|11⟩

여기서 α, β, γ, δ는 복소수 계수이며, |0⟩와 |1⟩는 각각 0과 1 상태를 나타낸다. 위 상태는 두 양자가 얽혀있는 상태로써, 각각의 양자를 독립적으로 표현하는 것이 불가능하다. 따라서 양자 얽힘이라는 상호 의존적인 상태가 형성된다.

양자 얽힘이 중요한 이유는 양자 컴퓨팅, 양자 통신 및 양자 암호 등의 분야에서 혁신적인 응용을 가능하게 한다는 점이다. 양자 얽힘이 존재하는 양자 시스템은 전통적인 물리적 상태와는 다른 특징을 지니며, 이러한 특성들을 활용하여 새로운 기술과[1] 애플리케이션을 개발하는 연구가 진행되고 있다.


2. 논쟁[편집]


오늘날의 양자얽힘 개념은 아스페를 제외한 다른 실험을 통하여 양자얽힘이 재확인된 상태이며. 실용화에 성공한 사례도 있다. 그러나 과거에 양자얽힘 개념이 등장했을 때는 많은 과학자에게 쉽게 받아들여지지 못했고, 따라서 관련된 논쟁이 많이 발생했다.

관측한 결과가 공간을 초월해서 다른 입자에 동시에 영향을 줄 수 있는 건 특수상대성이론의 '정보전달은 빛의 속도를 넘을 수 없다'는 대전제를 위배하는 것처럼 보일 수 있기 때문이다. 만약 여기서 쌍 입자인 S1과 S2 간에 어떠한 신호를 즉각적으로 전달되는 것이라면 특수상대성이론과 상충한다. 두 입자 간의 즉각적인 상호연관성이 밝혀지면 특수상대성이론은 무너질 것이고, 현대 물리학의 토대 또한 무너질 수 있다. 따라서 물리학자들은 '특수상대성이론의 위배' 문제를 방지하고 해결하기 위해 노력했다. 한 가지 방법은 양자 얽힘을 '초광속 전달'보다 '두 입자 사이의 원초적인 연결고리'와 비슷하게 해석하는 것이다. 그러면 두 광자 간의 거리가 제아무리 멀다고 해도 물리학자들은 이를 물리계의 한 부분으로 생각할 수 있게 된다. 두 광자가 실체를 이루고 있기 때문에 한 광자를 관측하는 건 물리계의 한 부분을 관측하는 것이고, 그 결과가 물리계 내부의 다른 부분에 바로 영향을 준다고 해석한다. 두 번째는 한 입자 관측이 이의 쌍 입자에게 영향은 미치지만, 정보는 전달되지 않는다고 해석하는 것이다.

빛보다 빠른 것은 없다는 특수상대성이론의 명제는 정보를 운반하는 물질에 한정되기 때문이다. 따라서 빛보다 빠르게 움직인다고 해도 정보를 전달하지 않는다면 특수상대성이론에는 위반되지 않는다. 이는 특수상대성이론에 위반되는 것처럼 보일 때 물리학자들이 흔하게 사용하는 해석 방식이기도 하다. 그러므로 광자를 하나 측정하는 동시에 다른 한 광자에 바로 영향을 준다고 해도, 두 광자 간에 교환되는 정보는 없기 때문에 특수상대성이론이 공표한 속도의 한계에는 이상을 미치지 않는다. 두 광자의 스핀은 서로 연관되어 있으나 이들은 어떠한 정보도 주고받지 않기 때문에 전통적인 인과율을 위배하지 않는다.


3. 예제[편집]




4. 둘러보기[편집]




파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-11-03 19:54:17에 나무위키 양자 얽힘 문서에서 가져왔습니다.

[1] 특히 양자암호는 무작위 난수로 생성되고 한 번 읽을 수 없어 이를 알고 있는 송신자와 수신자 외에는 암호화된 정보를 읽을 수 없다