1=2

덤프버전 :


1. 개요
2. 기하학(꺾은선)
2.1. 오류 규명
3.1. 오류 규명
4.1. 오류 규명
5.1. 오류 규명
5.1.1. 엄밀하지 않은 개념의 사용
6.1. 오류 규명
7.1. 오류 규명
7.1.1. 엄밀하지 않은 개념의 사용
8. 무한 지수 탑 함수(infinite power tower function)
8.1. 오류 규명
9.1. 오류 규명
10. 0 무한합
10.1. 오류 규명
11. 지수법칙
11.1. 오류 규명
12.1. 오류 규명
13. 관련 문서


1. 개요[편집]


'1=2'를 증명하는 역설을 소개하고 그 역설의 오류를 규명하는 문서다.

1=2라면 양변에서 1을 빼서 0=1, 양변에 (m-n)을 곱해 0=m-n, 양변에 n을 더해 n=m, m과 n은 어떤 수든 될 수 있으므로 모든 수가 같게 된다.[1]

이것이 ZFC 공리계 내에서 증명된다면 ZFC 공리계의 모순을 발견한 것이 된다. 즉 현재 보편적으로 알려져있는 수학 체계가 완전히 붕괴된다.

2. 기하학(꺾은선)[편집]


파일:나무_1=2_기하학.png

한 변의 길이가 1인 정삼각형을 생각하자. 우선 처음 정삼각형의 두 변의 길이의 합은 2이다. 이를 첫째 꺾은선이라고 하자. 이 정삼각형의 각 변을 이등분하는 점을 이어 그림과 같은 꺾은선을 그리자. 그러면 둘째 꺾은선의 총 길이는 2이다. 꺾은선을 그림으로써 새로 생기는 작은 정삼각형들의 각 변을 이등분하는 점을 이어 또 다른 꺾은선을 그릴 수 있다. 이 과정을 반복하면 꺾은선은 갈수록 촘촘해지며, 무한 번 반복하면 최후에는 처음의 정삼각형의 한 변이 된다. 다시 말해 처음 정삼각형의 두 변의 총 길이는 나머지 한 변의 길이와 같다. 곧, 2=1이다.


2.1. 오류 규명[편집]


우선, 위 과정을 반복하면 꺾은선은 결국 길이가 1인 선분으로 수렴하는 것 자체는 옳다. 그러나 위 증명은 '꺾은선의 길이의 극한'과 '꺾은선의 극한의 길이'를 같은 것으로 잘못 생각한 데서 오류가 발생했다. 둘이 꼭 같다는 보장이 없다.

위 그림의 [math(n)]번째 꺾은선을 [math(G(n))]이라 하고, 조각마다(piecewise) 미분가능한[2] 임의의 곡선 [math(g)]의 길이를 [math(L(g))]라고 하자. 그러면 [math(\varepsilon - N)] 논법에 의해 [math(\displaystyle\lim_{n\to\infty}G(n))]은 길이 1인 선분과 같으므로 [math(L\left(\displaystyle\lim_{n\to\infty}G(n)\right)=1)]이고, [math(\displaystyle\lim_{n\to\infty}L(G(n))=\displaystyle\lim_{n\to\infty}2=2)]이다. 그런데 위 증명에서는 [math(L\left(\displaystyle\lim_{n\to\infty}G(n)\right)=\displaystyle\lim_{n\to\infty}L(G(n)))]으로 잘못 생각하여 [math(2=1)]이라는 잘못된 결론에 도달한 것이다.

요컨대 이러한 오류는 수학적 귀납법에 의해 위 과정을 임의의 유한 번 시행하였을 때 길이가 2라는 사실을 바탕으로, 그 극한도 길이가 2일 것이라고 잘못 추론한 것에 기반하고 있다.


3. 대수학[편집]


[math(a=b)]라 하면
[math(a^2=ab)]이므로 [math(a^2-b^2=ab-b^2)]
인수분해하면 [math((a+b)(a-b)=b(a-b))]
양변을 [math((a-b))]로 나누면 [math(a+b=b)]
[math(a=b)]이므로 [math(b+b=b)]
즉, [math(2b=b)]이므로 [math(1=2)]

여담으로, 우려먹으면 이런 짓거리도 가능하다.
양변에 [math(a^2)]을 곱하면 [math(a^3=a^2b)]이므로 [math(a^3-b^3=a^2b-b^3)]
인수분해하면 [math((a-b)(a^2+ab+b^2)=b(a+b)(a-b))]
양변을 [math((a-b))]로 나누면 [math(a^2+ab+b^2=b(a+b))]
[math(a=b)]이므로 [math(b^2+b^2+b^2=b^2+b^2)]
즉, [math(3b^2=2b^2)]이므로 [math(2=3)]

이런 식으로 계속하면, 4차식에서 [math(3=4)], 5차식에서 [math(4=5)] ...을 도출하는 것도 가능하다.(물론, 1차식에서 [math(0=1)], 0차식(상수항)에서 [math(-1=0)] 도출도 가능하다. 정확하게는, [math(a)]차식에서 [math(a-1=a)] 증명이 가능하다.


3.1. 오류 규명[편집]


위 증명에서는 [math((a+b)(a-b)=b(a-b))]의 양변을 [math((a-b))]로 나누었는데, 맨 처음에 가정한 [math(a=b)]에 따라 [math(a-b=0)]이 되므로, 양변을 [math((a-b))]로는 나눌 수 없다. 다시 말해 [math(a+b=b)]가 나온 단계에서 이미 틀린 계산.

사실 인터넷에 떠도는 결과적으로 맞지 않는 증명식들 또는 아마추어 수학자들이 가장 많이 범하는 오류가 다름 아닌 '0으로 나누기'이다. 나누기 부분만 유심히 살펴보면 금방 틀린 점을 찾을 수 있다.

아이작 뉴턴유율법조지 버클리 등에게 공격을 받은 이유이기도 하다. 유율(= 무한소)이라는 방법으로 위 식과 비슷한 꼼수를 써서 넘어갔기 때문. 유율법 4.1문단 참고.

이산수학 증명 파트에서도 자주 언급되는 오류다.


4. 연분수[편집]


[math(a=\cfrac{2}{3-\cfrac{2}{3-\cfrac{2}{3-\cfrac{2}{3-\ddots}}}})]라 하자.

그러면 [math(a=\dfrac{2}{3-a})]에서 [math(a(3-a)=2)]이다. 정리하면 [math(a^2-3a+2=0)]에서 [math((a-1)(a-2)=0)]이 된다.
따라서 [math(a=1, 2)]이므로 [math(1=2=\cfrac{2}{3-\cfrac{2}{3-\cfrac{2}{3-\cfrac{2}{3-\ddots}}}})]이다.


4.1. 오류 규명[편집]


해당 연분수를 수열의 수렴값이 아닌 실재하는 값으로 이해하였기 때문에 생긴 오해이다. 중등 교육에서는 해석학을 엄밀히 가르치지 않아 학생들이 많이 착각하는 부분인데, 직접 연산해서 무한히 사칙연산을 하는 것은 불가능하다. 수학에서 무한합 등 무한한 연산으로 주어지는 것은 사실 무한수열을 늘여놓아 그 수열이 수렴하는지를 보고, 수렴한다면 그 수렴값을 따라가는 것이다.

위의 연분수를 다시 보자. 위의 연분수도 사실 점화식 [math(a_{n+1}=\frac{2}{3-a_n})]로 나타나는 수열의 극한이다. 그리고 수열은 초깃값 [math(a_1)]을 먼저 선언을 해야 정의가 된다. 초깃값에 일반적인 실수를 넣으면 이 수열은 [math(1)]로 수렴한다. 그런데 초깃값에 [math(2)]를 넣으면 이 수열은 이례적으로 [math(2)]로 수렴하게 된다. [math(a=1,2)]는 이렇게 넣는 초깃값에 따라 수렴값이 달라진다는 것을 의미하지, [math(a)]라는 참값이 2가지 값을 나타낸다는 뜻이 아니다.

비전공자에게 보다 익숙한 함수를 이용해 설명하자면, 위 연분수 [math(a)]는 상수가 아니라 [math(3)]을 제외한 실수 [math(a_1)]을 변수로 하는 함수 [math(a(a_1))]이고, 이 함수는 [math(a(2)=2)], 나머지에서 [math(1)]이 되는 불연속함수인 것이다.[3]


5. 미분[편집]


[math(f(x)=x^2)]라고 하면,
[math(f'(x)=2x)]이다.
한편 [math(f(x))]는 [math(x)]를 [math(x)]번 더한 것이므로 다른 방식으로 미분하면
[math(f'(x)=(\overbrace{x+x+ ... +x}^{x\;\rm{times}})'=\overbrace{1+1+...+1}^{x\;\rm{times}}=x)]
[math(f'(x)=2x=x)]
따라서 [math(1=2)]
[4]


5.1. 오류 규명[편집]


미지수를 상수로 잘못 해석하여 오류가 발생했다. 위 증명에서 [math((f_1(x)+f_2(x)+ ... +f_n(x))'=f_1'(x)+f_2'(x)+...+f_n'(x))]라는 미분의 기본 성질을 적용하기 위해서는 [math(n)]이 미분할 변수([math(x)])에 대한 상수여야 한다.[5] 그러나 [math(x\;\rm{times})]의 [math(x)]는 그 자체로 미분할 변수이므로(즉, [math(n=x)]이므로) 해당 성질을 적용할 수 없다. 비슷한 이유로 [math((e^x)'=e^x)]이지만 [math((e^2)'=0≠e^2)]이다.

따라서 [math(x)]를 미지수로 취급하면 문제가 해결된다. 항의 개수에 유의하며 미분 계산을 하면 다음과 같이 올바른 결과가 나온다.
[math(\begin{aligned}f'(x)&=(\overbrace{x+x+ \cdots +x}^{x\;\rm{times}})'\\&= \displaystyle\lim_{h \to \ 0} \frac {\{\overbrace{(x+h)+(x+h)+ \cdots +(x+h)}^{(x+h)\;\rm{times}}\} - (\overbrace{x+x+ \cdots +x}^{x\;\rm{times}})}{h}\\&= \displaystyle\lim_{h \to \ 0} \frac {(\overbrace{h+h+ \cdots +h)}^{x\;\rm{times}} + \{\overbrace{(x+h)+(x+h)+ \cdots +(x+h)}^{h\;\rm{times}}\}}{h}\\&=x +\displaystyle\lim_{h \to \ 0} \frac{(xh+h^2)}{h}\\&=x+x=2x\end{aligned})]
[math(x+h)]를 [math(x+h)]번 더한 것에서 [math(x)]를 [math(x)]번 더한 것을 빼고 [math(h)]를 [math(0)]으로 수렴시킨 것이다.


5.1.1. 엄밀하지 않은 개념의 사용[편집]


이런 미분을 생각해내다니 수학의 역사가 발칵 뒤집히겠네요. f(x) = 1 * f(x) 니까 f(x) = 1 + ... + 1이 f(x)개 만큼 있는거고 그러면 f'(x) = 0이네요. 이런, 세상의 모든 함수 f(x)에 대해 f'(x) = 0임을 방금 증명했습니다.

로지컬2분의 1은 e임을 증명하는 영상에 달린 베스트 댓글 중 하나[6]

[math((f_1(x)+f_2(x)+ ... +f_n(x))'=f_1'(x)+f_2'(x)+...+f_n'(x))]라는 미분의 기본 성질을 사용하기 위해서는 [math(n)]이 자연수 범위여야 한다. 즉, 위 논증에서는 [math((x+x+ ... +x)'=1+1+...+1)]라고 하였으므로 [math(x)]는 자연수 범위인데, 자연수 범위의 변수로 미분하는 것은 정의되지 않는다.

6. 적분[편집]


[math(\displaystyle \int \frac{1}{x} dx)]를 부분적분하면
[math(\displaystyle \int \frac{1}{x} dx\\=x\times \frac{1}{x}-\int -\frac{x}{x^2} dx\\=1+\int \frac{1}{x} dx )]
[math(\displaystyle \int \frac{1}{x} dx)]를 좌변으로 넘겨 소거하면 [math(0=1)]이고, 양 변에 [math(1)]을 더하면 [math(1=2)]이다.

6.1. 오류 규명[편집]


[math(\displaystyle \int \frac{1}{x} dx)]는 [math(\displaystyle \frac{1}{x})]의 수많은 부정적분 중 하나이므로 그냥 소거할 수 없다. 정확히 계산하면
[math(\displaystyle \int \frac{1}{x} dx-\int \frac{1}{x} dx\\=\int (\frac{1}{x}-\frac{1}{x}) dx\\=\int 0 dx=C)]
이므로 [math(0=1)]이라 할 수 없다. 위 식은 [math(C=1)]일때 성립한다.

7. 극한[편집]


[math(\displaystyle \lim_{n\to\infty}\frac{1}{n} =0)]이다.
따라서 극한의 기본 성질에 의해 [math(\displaystyle\lim_{n\to\infty}\bigg(\underbrace{\displaystyle\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}}_{\text{$n$ times}}\bigg)=0+0+\cdots+0=0)]이다.
그런데 [math(\underbrace{\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}}_{\text{$n$ times}}=1)]
이므로 [math(0=1)]이고 양변에 [math(1)]을 더하면 [math(1=2)]이다.


7.1. 오류 규명[편집]


[math(\displaystyle \lim_{n\to\infty}\left(\overbrace{\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}}^{\text{$n$ times}}\right)=\lim_{n\to\infty}\left({\frac{n}{n}}\right)=1)]이다.

이는 5.1번 문단과 마찬가지로 [math(n\;\rm{times})]의 [math(n)]을 극한 취할 변수([math(n)])에 대한 상수로 보고 극한의 기본 성질을 적용했기 때문에 발생한 오류이다.


7.1.1. 엄밀하지 않은 개념의 사용[편집]


[math(\displaystyle\lim_{n\to\infty} \left(f_1(n)+f_2(n)+\cdots +f_m(n)\right)=\displaystyle\lim_{n\to\infty}f_1(n)+\displaystyle\lim_{n\to\infty}f_2(n)+\cdots +\displaystyle\lim_{n\to\infty}f_m(n)=\displaystyle\sum_{k=1}^m \displaystyle\lim_{n\to\infty}f_k(n))]이라는 극한의 기본 성질을 사용한 것처럼 보인다. 하지만 위 논증에서 해당하는 부분은 [math(\displaystyle\lim_{n\to\infty}\left(\underbrace{\displaystyle\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}}_{\text{$n$ times}}\right)=0+0+\cdots+0)]인데, 여기에서 [math(m=n)]이라는 점이 문제다. [math(m)]은 극한 밖의 시그마에서도 사용되는 변수인데, [math(n)]은 극한을 나타내기 위한 보조 변수이므로 [math(m=n)]일 수 없다.


8. 무한 지수 탑 함수(infinite power tower function)[편집]


[math({\displaystyle {x^{x^{\cdot ^{\cdot}}}}}\!\!=2)] 와 같은 방정식을 생각하자.
이 방정식의 해는 [math(x^2=2)] 즉 [math(x=\sqrt2)]이다.[A] 풀이
이제 [math({\displaystyle {x^{x^{\cdot ^{\cdot}}}}}=4)]라는 방정식을 생각하자.
이 방정식의 해는 [math(x^4=4)] 즉 [math(x=\sqrt2)]이다.[A]
따라서 [math(2={\displaystyle {\sqrt2 ^{\sqrt2 ^{\cdot ^{\cdot }}}}}\!\!=4)]
따라서 [math(2=4,~1=2)]이다.


8.1. 오류 규명[편집]


결론부터 말하면, [math({\displaystyle {x^{x^{⋰}}}}\!\!=4)]의 해는 없다. 자세한 내용은 이 영상을 참고. 따라서 위 논증에서는 [math({\displaystyle {x^{x^{⋰}}}}\!\!=4)]의 해가 있다고 가정했기 때문에 오류이다.

설명을 더 보충하자면, 무한대테트레이션 [math(\displaystyle {\displaystyle {x^{x^{⋰}}}} \!\! = \lim_{n \to \infty} x \uparrow \uparrow n)]은 [math(-\dfrac{W(-{\rm Log}\,x)}{{\rm Log}\,x})][7]에 수렴하는데, 이 함수가 실수 함숫값을 띠는 정의역이 [math((0 ,\, 1))][math(\,\cup\,(1 ,\, e^{1/e}])][8]이고, 이에 따라 공역이 [math((0,\,1)\,\cup\,(1 ,\, e])][9]이므로, 당연히 [math(4)]는 여기에 속하지 않는다.

파일:나무_무한_지수_탑_함수_수정.svg
실제로 위의 [math(y=-\dfrac{W(-{\rm Log}\,x)}{{\rm Log}\,x})]의 그래프를 보면, 위의 정의역을 벗어난 구간에서는 물색 선([math(\Im(y))])이 [math(0)]이 아니며, 이는 실수로 표현할 수 없다는 뜻이다.


9. 허수[편집]


[math(i=\sqrt{-1})]
[math(\frac{1}{\sqrt-1}=\frac{1}{i})]
[math({\sqrt\frac{1}{-1}}=\frac{1}{i})]
[math({\sqrt-1}=\frac{1}{i})]
[math(i=\frac{1}{i})]
[math(i^2=1)]
[math(-1=1)]
[math(0=2)]
[math(0=1)]
[math(1=2)]


9.1. 오류 규명[편집]


[math(\displaystyle {\frac{1}{\sqrt{-1}} \neq\sqrt\frac{1}{-1}}=\sqrt{-1} =i)]이다. 왜냐하면 [math(\displaystyle \frac{\sqrt{a}}{\sqrt{-b}}= \frac{\sqrt{a}}{\sqrt{b} i} = -\sqrt{\frac{a}{b}}i= -\sqrt{\frac{a}{-b}} )]가 되기 때문이다.




10. 0 무한합[편집]


[math(0=0+0+0+\cdots)]
[math(=(1-1)+(1-1)+(1-1)+\cdots)]
[math(=1-1+1-1+1-1+1-\cdots)]
[math(=1+(-1+1)+(-1+1)+(-1+1)+\cdots)]
[math(=1+0+0+0+\cdots)]
[math(=1)]
[math(0=1)]
[math(1=2)]


10.1. 오류 규명[편집]


무한합이기 때문에 괄호를 풀거나 묶을 수 없다.

참고로 괄호를 푼 수열은 따로 그란디 급수라는 이름이 붙어 있으며, 오늘날에는 라마누잔합을 이용해 계산한 값인 [math(\displaystyle \frac{1}{2})]을 수렴값으로 '정의'하는 것이 다수론이다.


11. 지수법칙[편집]


[math(1=1.5-0.5=1.5+\left(\displaystyle -\frac{1}{2}\right)=1.5+\left(\left(\displaystyle -\frac{1}{2}\right)^3\right)^{\textstyle\frac{1}{3}}=1.5+\left(\left(\displaystyle-\frac{1}{2}\right)^3\right)^{\textstyle\frac{2}{6}})]
[math(=1.5+\left(\left(\displaystyle-\frac{1}{2}\right)^2\right)^{\textstyle\frac{3}{6}}=1.5+\left(\displaystyle\frac{1}{4}\right)^{\textstyle\frac{1}{2}}=1.5+\displaystyle\frac{1}{2}=2)]


11.1. 오류 규명[편집]


지수법칙 [math((a^m)^n=a^{mn})]에서 [math(m, n)]이 유리수 범위일 때는 밑 a가 양수일 때만 해당 법칙이 성립한다. 위에서는 밑이 [math(-\frac{1}{2})]이라는 음수이기 때문에[10] 위의 지수법칙을 응용한 [math((a^m)^{\frac{n}{p}}=(a^n)^{\frac{m}{p}})]이 성립하지 않는 것이다. 여기서 한걸음 더 나가 [math(i=i^\frac{4}{4}=\sqrt[4] {i^4}=\sqrt[4] {1}=1)] 따라서 [math(i=1)]이라는 괴상한 결론도 가능하다.[11]


12. 바나흐-타르스키 역설[편집]



ZFC 공리계 내에서 하나를 같은 크기의 구 둘로 만들 수 있다. 자세한 증명은 문서 참조.


12.1. 오류 규명[편집]


위 정리가 1=2를 증명하지는 않는다. 이는 우리가 '도형의 개수'라는 개념의 성질에 대해 잘 모르기 때문이다.[12] 따라서 위 정리가 1=2를 증명한다고 주장하려면 우리가 이미 성질을 잘 알고 있는 개념들과 연관지어 설명할 필요가 있다. 연관지을 수 있는 개념으로 당장 생각나는 것은 두 가지가 있는데, 하나는 기수(집합의 원소의 개수)이고 다른 하나는 측도(여기서는 부피)이다. 기수 개념과 연관지을 경우, 구 하나의 기수는 초한기수이며, 원래 초한기수에는 유한 배를 해도 자기 자신과 같기 때문에 1=2가 증명되지 않는다. 이는 0×1=0×2에서 1=2를 증명할 수 없는 것과 같은 이유이다. 측도 개념과 연관지을 경우, 위 정리의 증명 중 구를 두 개로 만드는 과정에서 부피를 구할 수 없는 집합이 발생한다. 그러므로 두 집합(구 하나와 구 둘)의 측도가 같다고 할 수 없고, 따라서 이 경우에도 1=2가 증명되지 않는다. 따라서 위 정리로 1=2를 증명할 수 있다는 주장은 논리적 비약이다.


13. 관련 문서[편집]


파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-10-16 03:33:18에 나무위키 1 문서에서 가져왔습니다.

[1] 이것은 1=2일때만 성립하는 것이 아니다. 1=3이라도 성립한다. 1=3이라면 0=2이고, 2로 나누어 0=1이다. '다른 것이 같은 것이라면?'을 가정하기에 어떻든 사실상 말장난이다.[2] 주어진 곡선을 미분가능한 유한 개의 조각으로 자를 수 있을 때 조각마다 미분가능하다고 한다. 임의의 자연수 [math(n)]에 대해 [math(G(n))]은 조각마다 미분가능하다.[3] 수식으로 표현하자면 집합 판별 함수를 이용해 [math(y = {\bold 1}_{\{2\}}(x) + 1)] 정도로 표현 가능하다.[4] 위 방식대로 예를 들어 [math(f(x)=x=1+1+ \cdots +1)]로 생각한다면 이 함수를 미분해도 [math(f'(x)=0+0+ \cdots +0=0)]이고 틀린 값이 나온다.[5] 미분의 해당 성질은 [math(n)]이 [math(x)]에 독립일 것을 전제로 한다. 이러한 전제를 바꿔버리면 전혀 다른 명제가 되어버린다.
실제로 [math(n)]이 [math(x)]에 종속될 경우에는 해당 식이 성립하지 않는다. 즉, [math((f_1(x)+f_2(x)+ ... +f_{n(x)}(x))'=f_1'(x)+f_2'(x)+...+f_{n(x)}'(x))]은 일반적으로 성립하지 않는다. 다음과 같은 반례가 있다.
[math(f_1(x)=0,\; f_2(x)=x,\; n(x)=\begin{cases} 1, \;\;x=0 \\ 2, \;\;x\neq 0 \end{cases})]
이 경우 모든 [math(x)]에 대해 [math(f_1(x)+f_2(x)+...+f_{n(x)}(x)=x)]이므로 [math((f_1(x)+f_2(x)+ ... +f_{n(x)}(x))'=1)]이지만, [math(f_1'(x)+f_2'(x)+...+f_{n(x)}'(x)=\begin{cases} 0,\;\; x=0 \\ 1,\;\; x\neq 0 \end{cases})]이므로 좌변과 우변이 다르다.
[6] 이 유튜버의 증명 영상은 고의적으로 교묘한 수학적 오류를 이용해 이상한 명제를 증명하는 컨셉의 영상이다. 즉 거짓임을 명백히 깔고 가는 것이다. 이 댓글 역시 같은 컨셉의 댓글이다. 컨셉을 이해 못하고 진짜 믿어버리는 사람도 나온다는 게 문제지만[A] A B 엄밀히 말하면 다른 해들도 있지만 무연근이므로 무시한다.[7] [math(W)]는 람베르트 W 함수, [math(\rm Log)]는 복소로그함수이다. 유도 과정 보기[8] [math(e^{1/e})]는 1.444667861 정도 되는 수인데, 위의 [math(\sqrt2)]보다 약간 더 크다. 위 영상에서는 해석적 확장을 쓰지 않았기 때문에 정의역을 [math([e^{-e},\,e^{1/e}])]로 제시한다.[9] [math(0)], [math(1)]의 경우는 로피탈의 정리를 사용하여 함숫값이 각각 [math(0)], [math(1)]임을 보일 수 있다.[10] 밑이 음수이고 지수가 정수가 아닌 실수이면 해당 수는 허수가 된다.[11] 이것은 사차방정식 [math(x^{4}=1)] 의 해와 같고, 이를 풀면 [math(x=1, x=-1, x=i, x=-i)], 이렇게 총 4개의 근이 나온다. 따라서 [math(i=1, i=-1, i=i, i=-i)]라는 네 가지 괴상한 결론이 나온다. 물론 한 가지([math(i=i)])만 맞는다.[12] 여기서 '잘 모른다'라는 것은 '위 정리로 1=2를 증명할 만큼 충분히 알지는 못한다'라는 뜻이다. 즉, 더 자세히 말하자면 '특정 도형 몇 개를 유한 조각으로 나눈 뒤 적절히 회전 이동, 평행 이동하여 다시 그 도형 몇 개를 만들었을 때 도형의 개수는 보존된다'라는 '도형의 개수'의 성질이 직관적으로는 옳아보일 수 있어도 증명되지는 않았기 때문이다.