홀 효과

덤프버전 :


전자기학
Electromagnetism

[ 펼치기 · 접기 ]
기초 개념
관련 수학 이론
[math(\boldsymbol{\nabla})] · 디랙 델타 함수 · 연속방정식 · 분리 벡터
전기 · 자기
개념
전자기력 · 전자기 유도(패러데이 법칙) · 맥스웰 방정식 · 전자기파 · 포인팅 벡터 · 전자기학의 경계치 문제 · 전자기파 방사
정전기학
전하 · 전기장 · 전기 변위장 · 전기 퍼텐셜 · 가우스 법칙 · 전기 쌍극자 모멘트 · 유전율 · 대전현상 · 정전용량 · 시정수 · 정전기 방전
정자기학
자성 · 자기장 · 자기장 세기 · 자기 퍼텐셜 · 자기 쌍극자 모멘트 · 로런츠 힘 · 홀 효과 · 비오-사바르 법칙 · 앙페르 법칙 · 투자율
구현체
자석(전자석) · 발전기 · 전동기
회로이론 · 전자회로
개념
회로 기호도 · 전류 · 전압 · 전기 저항(비저항 · 전기 전도도) · 전력(전력량) · 직류 · 교류 · 키르히호프의 법칙 · 중첩의 원리 · 삼상
소자
수동소자: 직류회로(휘트스톤 브릿지) · RLC회로(커패시터 · 인덕터 · 레지스터), 변압기
능동소자: 전원 · 다이오드 · 트랜지스터 · 연산 증폭기
응용 및 심화개념
관련 학문
상대론적 전자기학 · 양자 전기역학 · 응집물질물리학 · 고체물리학 · 전자공학 · 전기공학 · 제어공학 · 물리화학 · 광학 · 컴퓨터 과학(컴퓨터 공학)
토픽
이론
광자 · 게이지 장(역장 · 장이론) · 물질파(광전효과) · 다중극 전개 · 맥스웰 변형 텐서 · 방사선 · 반도체 · 전기음성도 · 와전류 · 방전 · 자극 · 표피효과 · 동축 케이블
음향
앰프(파워앰프 · 프리앰프 · 인티앰프 · 진공관 앰프) · 데시벨 · 네퍼

반 데르 발스 힘(분산력) · 복사 · 전도(전도체 · 열전 효과) · 초전도체 · 네른스트 식
광학
굴절(굴절률 · 페르마의 원리) · 스넬의 법칙 · 산란 · 회절 · 전반사 · 수차(색수차) · 편광 · 분광학 · 스펙트럼 · 렌즈(얇은 렌즈 방정식) · 프리즘 · 거울(구면 거울 방정식) · (색의 종류 · RGB)
전산
논리 연산 · 논리 회로 · 오토마타(프로그래밍 언어) · 임베디드 · 컴퓨터 그래픽스(랜더링) · 폴리곤 · 헥스코드
생물
생체신호(생체전기 · BCI) · 신경계(막전위 · 활동전위 · 능동수송) · 신호전달 · 자극(생리학)(베버의 법칙 · 역치)
관련 문서
물리학 관련 정보 · 틀:전기전자공학 · 전기·전자 관련 정보 · 틀:이론 컴퓨터 과학 · 틀:컴퓨터공학
}}}


'''고체물리학·응집물질물리학
'''

[ 펼치기 · 접기 ]
기반
전자기학 · 양자역학(양자장론 · 이차양자화) · 통계역학 · 미분방정식 · 위상수학(매듭이론)
결정학
고체 · 결정 · 결정 격자(브라베 격자) · 군론(점군 · 공간군) · 역격자(브릴루앙 영역) · 구조 인자 · 결함 · 준결정
에너지띠 이론
결정 운동량 · 페르미 - 디랙 분포 · 자유 전자 모형(=드루드-조머펠트 모형) · 드루드 모형 · 분산 관계 · 원자가띠 · 전도띠 · 띠틈 ·페르미 준위 · 페르미 면 · 꽉묶음 모형 · 밀도범함수 이론 · 도체 · 절연체 · 반도체(양공 · 도핑)
자성
강자성(이징 모형) · 반자성 · 상자성 · 반강자성 · 준강자성 · 홀 효과 · 앤더슨 불순물 모형(콘도 효과) · 초전도체(쿠퍼쌍 · 조지프슨 효과 · BCS 이론 · 보스-아인슈타인 응집 · 마이스너 효과)
강상 관계
상전이(모트 전이) · 페르미 액체 이론 · 초유동체 · 준입자(양공 · 엑시톤 · 포논 · 마그논 · 플라즈몬 · 폴라리톤 · 폴라론 · 솔리톤 · 스커미온) · 선형 응답 이론(쿠보 공식 · 요동-흩어지기 정리) · 평균장 이론 · 그린 함수 · 스펙트럼 함수 · 파인만 다이어그램
위상 물리학
위상부도체(그래핀) · 기하학적 위상 · 양자 홀 효과 · 마요라나 페르미온(마요라나 영준위 상태)
실험 및 장비
전자현미경(SEM#주사식 전자 현미경 · TEM · STM · AFM) · XRD · 분광학(NMR · 라만 분광법) · 방사광 가속기


1. 개요
2. 종류
2.1. 양자 홀 효과
2.2. 열 홀 효과(Thermal Hall effect)
2.3. 비정상 홀 효과(Anomalous Hall effect)
3. 기타


1. 개요[편집]


Hall effect

도체 또는 반도체 내부에 흐르는 전하의 이동방향에 수직한 방향으로 자기장을 가하게 되면, 금속 내부에 전하 흐름에 수직한 방향으로 전위차가 형성되게 된다. 이러한 현상을 홀 현상이라고 하고, 그렇게 형성되는 전위차를 홀 전압이라고 한다.

홀 효과는 1879년 미국의 물리학자 홀(E. Hall; 1855~1938)이 발견하였다. 어원상으로 큰 방을 뜻하는 (hall)과는 무관하다.

당연한 이야기지만, 도체 또는 반도체 내부에서 움직이는 전하의 움직임, 즉 전류는 외부 자기장에 영향을 받게 된다. 이 때 자기장을 전류에 수직한 방향으로 가해주는 경우, (+) 전하와 (-) 전하는 자기장의 방향에 따라서 도체 또는 부도체의 좌우 양단으로 흩어지게 된다. 고등학교 물리 시간에 수직한 방향으로 가해지는 자기장 안에서 전하의 움직임을 생각하면 편하다.

그럼 도대체 "이것이 왜 중요한가?"라고 물을 수 있지만 이러한 현상을 통해서 "당최 이 놈 안에서 어떤 극성의 전하가 지배적이냐?"를 설명할 수 있는 실험이다. 쉽게 말해서 물체 내부의 전하의 극성과 밀도를 대략적으로 구할 수 있는 실험 중 하나라고 할 수 있다. 또한 위 현상은 반도체의 물성 실험을 할 때 중요한데, 통제된 환경 내에서 전하의 흐름을 얼마나 조절할 수 있는지가 중요한 반도체의 특성상 각 조건에 따라 홀 효과를 측정하여서 전하 밀도를 비교한다.

또한 홀 효과는 자기장 센서에 활용된다. 통칭 홀 센서로 불리는 이 센서는 정확도가 상대적으로 높고[1] 범용적으로 사용할 수 있어, 핸드폰 등의 각종 장비에 들어가는 자기장 센서는 대부분 홀 센서를 활용하고 있다. 단독으로 자기장의 방향이나 세기를 감지하기도 하고 영구자석과 결합해 가까운 상대 위치를 정확하게 센싱하는 용도로 널리 쓰인다. 특히 게임기 패드나 조이스틱에서 각도를 센싱하는 건 대부분 값싼 가변저항기를 쓰지만 오래쓰면 저항막이 마모되어 센터가 쏠리는 드리프트 현상이 나타나는데 홀 소자를 이용하는 방식은 기계적 접촉이 없으므로 매우 수명이 길고 드리프트 현상이 없다. 고급 조이스틱이나 게임 패드의 대명사.

아래는 홀 효과를 간단히 애니메이션으로 나타낸 동영상이다.



2. 종류[편집]



2.1. 양자 홀 효과[편집]


양자 홀 효과는 2차원 표면에서 매우 낮은 온도와 강한 자기장 하에서는 홀 전도도가 양자화되는 현상을 일컫는 말이다. 위에서 설명했다시피 고전적인 홀 효과에서는 홀 현상에서의 홀 전도도가 전하밀도에 상관이 있었는데 극한적인 상황에서는 물질이고 뭐고 다 무시해버리고 특정 값의 정수배로 비례하는 일이 벌어지게 된다.

이는 자기전도도 텐서(Magneto-conductivity tensor)에서 온도가 낮고 자기장이 큰 극한상황을 정의하다보면 자연스럽게 도출되는 결과인데, 보통 이러한 상황에서의 홀 비저항은 다음과 같다.

[math( \displaystyle \rho_{xy}={h \over ne^2} )]
[1] 자기저항 센서가 정확도는 훨씬 더 높다.

이때, [math(h)]는 플랑크 상수, [math(e)]는 기본 전하량이다.

이거 하나로 서독의 물리학자 클라우스 폰 클리칭이 1985년 노벨 물리학상을 받았다

보통 이러한 홀 비저항의 [math(n)] 값은 정수를 갖지만 몇몇 특수한 물질은 정수가 아닌 분수값을 가지는 경우도 존재한다.[2]

2000년대 그래핀연구의 대폭발을 일으킨 실험 기법이기도 하다.

현재는 Fractional quantum Hall effect, Quantum anomalous Hall effect, Quantum Spin Hall Effect 등의 방향의 연구가 활발하다.


2.2. 열 홀 효과(Thermal Hall effect)[편집]


물질 내에서 열이 전도될 때, 물질에 걸린 자기장에 의해 입자의 진행 방향과 수직하는 방향으로 열 전도율이 바뀌는 현상이다. 간단하게 보면, 물질 내에서 입자가 진행할 때, 한 쪽은 차갑고 다른 쪽은 상대적으로 따뜻해지는 것이라 이해할 수 있다.


2.3. 비정상 홀 효과(Anomalous Hall effect)[편집]


홀 효과가 발견된 지 1년 후에 에드윈 홀은 강자성체에서 기존 홀 효과보다 더 큰 홀 저항을 측정하였다. 자화와 스핀-궤도 결합이 있는 물질에서는 외부 자기장이 없더라도 홀 효과를 관측할수 있으며, 이 현상을 비정상(anomalous) 홀 효과라고 부른다.[3]

물질이 자화 (Magnetization) M을 가지는 경우 Hall resistance는 아래와 같이 표현된다.

[math(R_{xy} = R_{O} B + R_{A} M)] [4]
[2] 이런 것을 Fractional quantum Hall effect라고 한다.[3] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010)[4] [math(R_{O})] 를 ordinary Hall coefficient, [math(R_{A})] 를 Anomalous Hall coefficient 라 하며 문헌에 따라 표기가 다를 수 있다.


3. 기타[편집]


전자 이외에도 다양한 준입자에서 홀 효과가 이론적으로 제안되고, 실험적으로 관측되었다. 21세기 초에 들어 광자 홀 효과(Photon Hall effect)나 포논 홀 효과(Phonon Hall effect) 등이 관측되었고, 2010년 즈음에는 관측하기 난해했던 마그논 홀 효과(Magnon Hall effect)까지 발견해내게 되었다.[5]

그러나 실험물리학적 진보와는 별개로, 이 효과는 아직도 명확한 원인이 밝혀지지 않았기 때문에 21세기의 물리학에서 활발히 연구되는 주제 중 하나이다.

파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-26 20:35:17에 나무위키 홀 효과 문서에서 가져왔습니다.

[5] Onose, Y., Ideue, T., Katsura, H., Shiomi, Y., Nagaosa, N., & Tokura, Y. (2010). Observation of the magnon Hall effect. Science, 329(5989), 297-299.