이중근호

덤프버전 :




[[대수학|대수학

Algebra
]]

틀 색상에 대한 토론이 진행중입니다. #
[ 펼치기 · 접기 ]
이론
기본 대상
연산 · 항등식(가비의 이 · 곱셈 공식(통분 · 약분) · 인수분해) · 부등식(절대부등식) · 방정식(풀이 · (무연근 · 허근 · 비에트의 정리(근과 계수의 관계) · 제곱근(이중근호 · 개방법) · 환원 불능) · 부정 · 불능) · 비례식 · 다항식 · 산술(시계 산술)
수 체계
자연수(소수) · 정수(음수) · 유리수 · 실수(무리수(초월수) · 초실수) · 복소수(허수) · 사원수 · 대수적 수 · 벡터 공간
다루는 대상과 주요 토픽
대수적 구조
군(group)
대칭군 · 기본군 · 자유군 · 리 군 · 괴물군 · 점군 · 순환군 · 군의 작용 · 동형 정리 · 실로우 정리
환(ring)
아이디얼
체(field)
갈루아 이론 · 분해체
대수
가환대수 · 리 대수 · 불 대수(크로네커 델타)
마그마·반군·모노이드
자유 모노이드 · 가환 모노이드
선형대수학
벡터 · 행렬 · 텐서(텐서곱) · 벡터 공간(선형사상) · 가군(Module) · 내적 공간(그람-슈미트 과정 · 수반 연산자)
정리·추측
대수학의 기본정리 · 나머지 정리 · 유클리드 호제법 · 부분분수분해 · PID 위의 유한생성 가군의 기본정리 · 산술·기하 평균 부등식 · 바이어슈트라스 분해 정리 · 호지 추측미해결 · 가환대수에서의 호몰로지 추측미해결
관련 하위 분야
범주론
함자 · 수반 · 자연 변환 · 모나드 · 쌍대성 · 층 이론(층들) · 토포스 이론 · 타입 이론
대수기하학
대수다양체 · 스킴 · 사슬 복합체(에탈 코호몰로지) · 모티브
대수적 정수론
타원곡선 · 디오판토스 방정식 · 유리근 정리 · 모듈러성 정리
가환대수학
스펙트럼 정리
표현론
실베스터 행렬
기타 및 관련 문서
수학 관련 정보 · 추상화 · 1학년의 꿈 · 노름 · 혼합계산 · 분배법칙 · 교환법칙 · 결합법칙 · 교재



1. 개요
2. 표기
3. 공식
3.1. 예시
4. 다중근호
5. 국가별 교육과정
6. 관련 문서


1. 개요[편집]


/ double radical

이중근호근호 안에 근호가 하나 더 있는 것을 말한다. 이런 상태가 반복되어 근호가 세 개 이상이 되면 다중근호()라고 한다.


2. 표기[편집]


근호 안에 또 다른 근호를 표기할 때는, 관례적으로 모든 근호를 [math(\sqrt{1+3\sqrt{5+\sqrt 7}})]처럼 보기 좋게 우측으로 몰아서 표기한다. 꼭 이렇게 해야 수학적으로 옳은 것은 아니며, [math(\sqrt{3\sqrt{5+{\sqrt 7}}+1})]와 같이 뒤죽박죽 표기해도 문제는 없다.

3. 공식[편집]


이중근호로 된 식을 바로 계산하기는 쉽지 않으므로 단일근호로 바꿀 필요가 있다. 아래의 공식으로 이중근호를 풀어낼 수 있다.

[math(\displaystyle \begin{aligned} \sqrt{a+b+2\sqrt{ab}}&=\sqrt{a}+\sqrt{b} \\ \sqrt{a+b-2\sqrt{ab}}&=\bigl|\sqrt{a}-\sqrt{b}\bigr|\end{aligned} )]

증명은 아래와 같다.

[math(\displaystyle \begin{aligned} \sqrt{a+b+2\sqrt{ab}}&=\sqrt{\sqrt{a}^2+2\sqrt{a}\sqrt{b}+\sqrt{b}^2} \\ &=\sqrt{\bigl(\sqrt{a}+\sqrt{b} \bigr)^2} \\ &=\sqrt{a}+\sqrt{b} \\ \sqrt{a+b-2\sqrt{ab}}&=\sqrt{\sqrt{a}^2-2\sqrt{a}\sqrt{b}+\sqrt{b}^2} \\ &=\sqrt{\bigl(\sqrt{a}-\sqrt{b}\bigr)^2} \\ &=\bigl|\sqrt{a}-\sqrt{b}\bigr|\end{aligned} )]

위 증명에서는 다음의 곱셈 공식을 사용했다.

[math(\displaystyle \begin{aligned} (a+b)^2&=a^2+2ab+b^2 \\ (a-b)^2&=a^2-2ab+b^2 \end{aligned} )]

또한 다음을 주의해야 한다. 1학년의 꿈 참고.

[math(\displaystyle \sqrt{\sqrt{a\pm b}}\neq\sqrt{\sqrt{a}\pm\sqrt{b}} \neq\sqrt{\sqrt{a}}\pm\sqrt{\sqrt{b}})]


간혹 네제곱근을 사용해야 단일근호로 바꿀 수 있는 경우도 있다. 즉,

[math(\sqrt{a+b\sqrt r} = \sqrt[4]{r} \sqrt{b+\dfrac{a}{r} \sqrt r})]

로 변형 후 위 공식을 적용해야 하는 경우도 있다는 뜻이다.

3.1. 예시[편집]


[math(\displaystyle \begin{aligned} \sqrt{5+2\sqrt{6}}&=\sqrt{(2+3)+2\sqrt{2 \cdot 3}}\\&=\sqrt{2}+\sqrt{3}\\\\\sqrt{7-2\sqrt{10}}&=\sqrt{(2+5)-2\sqrt{2 \cdot 5}}\\&=\bigl|\sqrt{2}-\sqrt{5}\bigr|=\sqrt{5}-\sqrt{2} \\\\ \sqrt{4+3\sqrt 2}&=\sqrt[4]{2} \sqrt{3+2\sqrt 2}\\&=\sqrt[4]{2} \sqrt{(2+1)+2\sqrt{2 \cdot 1}}\\&=\sqrt[4]{2}(\sqrt{2} +1) \\\\ \sqrt{5+3\sqrt 5}&=\sqrt[4]{5} \sqrt{3+\sqrt 5}\\&=\sqrt[4]{5} \sqrt{\dfrac{6+2\sqrt{5}}{2}} \\&=\sqrt[4]{5} \sqrt{\dfrac{(5+1)+2\sqrt{5 \cdot 1}}{2}} \\&=\dfrac{\sqrt[4]{5}(\sqrt{5} +1)}{\sqrt 2}\end{aligned})]


4. 다중근호[편집]


이중근호뿐만 아니라 삼중근호, 사중근호 등도 얼마든지 식으로 나타낼 수 있다. 삼중근호를 단일근호로 바꾸려면, 먼저 삼중근호 안에 있는 이중근호를 위의 공식을 이용하여 단일근호로 바꾼다. 이렇게 하여 얻어진 이중근호 식에, 다시 공식을 적용하여 단일근호로 바꾸면 된다. 몇 개의 근호가 중첩되어 있건 이런 식으로 하면 된다.

다중근호가 들어간 대표적인 식으로 가우스가 구한 정십칠각형의 코사인 값이 있다. 코사인 값이 삼중근호이지만[1] 사인 값이 사중근호이다. 마찬가지로 정257각형은 사인 값이 팔중근호, 정65537각형은 사인 값이 십육중근호, 정4294967297각형[2]은 삼십이중근호가 들어가게 된다. 페르마 수는 2차방정식 [math(2^{n})]번으로 변환 가능해서 그러며 1의 [math(n)]제곱근과도 공식이 겹친다. 정17각형의 사인, 코사인 값을 유도하는 공식은 다음과 같다.#[3]
[math(\begin{aligned}16 \cos{ \biggl(\dfrac{2}{17} \pi \biggr)}=&- 1 + \sqrt {17} + \sqrt {34 - 2 \sqrt {17}} + 2 \sqrt {17 + 3 \sqrt {17} - \sqrt {34 - 2 \sqrt {17}} - 2 \sqrt {34 + 2 \sqrt {17}} }\end{aligned})]
정오각형, 정십이면체, 정이십면체, 정백이십포체, 정육백포체 그리고 아르키메데스 다면체의 면적과 부피를 구할 때도 다중근호가 많이 사용된다.

2제곱근과 3제곱근이 섞여 있는 다중근호는 식이 훨씬 더 복잡해진다. 3차방정식과 4차방정식의 근의 공식이 이러하다. 정칠각형, 정구각형, 다듬은 육팔면체, 다듬은 십이이십면체도 2제곱근과 3제곱근이 반복돼서 나온다.[4]

5. 국가별 교육과정[편집]



5.1. 대한민국[편집]


2007 개정 교육과정에서 고1 과정에 이중근호를 포함하는 등, 계속 이중근호를 가르치고 있었으나 2009 개정 교육과정부터 전면 삭제되었다.


5.2. 일본[편집]


수학Ⅰ의 1단원에 속하는 〈식의 계산〉 부분에서 다룬다. 따라서 일본 대학으로 유학하려면 입시를 위해 이중근호를 공부해야 한다.


6. 관련 문서[편집]


파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-14 11:56:21에 나무위키 이중근호 문서에서 가져왔습니다.

[1] [math(n)]이 페르마 수라 할때 [math(\cos{(2\pi/n)})], [math(\cos{(\pi/n)})]값이 [math(n-1)]중근호가 들어간다. 정삼각형의 코사인 값은 유리수지만 사인 값이 단일근호이며 정오각형의 코사인 값이 단일근호이지만 사인 값은 이중근호가 들어간다.[2] 4294967297의 약수인 정641각형, 정6700417각형도 32중근호가 사용된다.[3] 제목은 5차방정식이라 되어있지만 중간부분에 정십칠각형 코사인 값을 유도하는 방법이 나온다. 마찬가지로 257, 65537각형 등도 유도 가능해 보인다.[4] 아르키메데스 다면체 중 다듬은 육팔면체와 다듬은 십이이십면체만 해당. 이 둘이 [math(n)]차원 아르키메데스 다면체 중에서는 다른 차원에서는 찾아볼 수 없는 3차원의 고유한 형태이기도 하다.