저마늄

덤프버전 :


주기율표
[ 펼치기 · 접기 ]
족→
주기↓
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
1
[[수소|{{{#d00,#fc3 H
{{{-5

수소
]]
[[헬륨|{{{#d00,#fc3 He
{{{-5

헬륨
]]
2
[[리튬|{{{#000,#fff Li
{{{-5

리튬
]]
[[베릴륨|{{{#000,#fff Be
{{{-5

베릴륨
]]
[[붕소|{{{#000,#fff B
{{{-5

붕소
]]
[[탄소|{{{#000,#fff C
{{{-5

탄소
]]
[[질소|{{{#d00,#fc3 N
{{{-5

질소
]]
[[산소|{{{#d00,#fc3 O
{{{-5

산소
]]
[[플루오린|{{{#d00,#fc3 F
{{{-5

플루오린
]]
[[네온|{{{#d00,#fc3 Ne
{{{-5

네온
]]
3
[[나트륨|{{{#000,#fff Na
{{{-5

나트륨
]]
[[마그네슘|{{{#000,#fff Mg
{{{-5

마그네슘
]]
[[알루미늄|{{{#000,#fff Al
{{{-5

알루미늄
]]
[[규소|{{{#000,#fff Si
{{{-5

규소
]]
[[인(원소)|{{{#000,#fff P
{{{-5

]]
[[황(원소)|{{{#000,#fff S
{{{-5

]]
[[염소(원소)|{{{#d00,#fc3 Cl
{{{-5

염소
]]
[[아르곤|{{{#d00,#fc3 Ar
{{{-5

아르곤
]]
4
[[칼륨|{{{#000,#fff K
{{{-5

칼륨
]]
[[칼슘|{{{#000,#fff Ca
{{{-5

칼슘
]]
[[스칸듐|{{{#000,#fff Sc
{{{-5

스칸듐
]]
[[티타늄|{{{#000,#fff Ti
{{{-5

티타늄
]]
[[바나듐|{{{#000,#fff V
{{{-5

바나듐
]]
[[크로뮴|{{{#000,#fff Cr
{{{-5

크로뮴
]]
[[망가니즈|{{{#000,#fff Mn
{{{-5

망가니즈
]]
[[철(원소)|{{{#000,#fff Fe
{{{-5

]]
[[코발트|{{{#000,#fff Co
{{{-5

코발트
]]
[[니켈|{{{#000,#fff Ni
{{{-5

니켈
]]
[[구리|{{{#000,#fff Cu
{{{-5

구리
]]
[[아연|{{{#000,#fff Zn
{{{-5

아연
]]
[[갈륨|{{{#000,#fff Ga
{{{-5

갈륨
]]
[[저마늄|{{{#000,#fff Ge
{{{-5

저마늄
]]
[[비소|{{{#000,#fff As
{{{-5

비소
]]
[[셀레늄|{{{#000,#fff Se
{{{-5

셀레늄
]]
[[브로민|{{{#00f,#3cf Br
{{{-5

브로민
]]
[[크립톤|{{{#d00,#fc3 Kr
{{{-5

크립톤
]]
5
[[루비듐|{{{#000,#fff Rb
{{{-5

루비듐
]]
[[스트론튬|{{{#000,#fff Sr
{{{-5

스트론튬
]]
[[이트륨|{{{#000,#fff Y
{{{-5

이트륨
]]
[[지르코늄|{{{#000,#fff Zr
{{{-5

지르코늄
]]
[[나이오븀|{{{#000,#fff Nb
{{{-5

나이오븀
]]
[[몰리브데넘|{{{#000,#fff Mo
{{{-5

몰리브데넘
]]
[[테크네튬|{{{#000,#fff Tc
{{{-5 __

테크네튬
__]]
[[루테늄|{{{#000,#fff Ru
{{{-5

루테늄
]]
[[로듐|{{{#000,#fff Rh
{{{-5

로듐
]]
[[팔라듐|{{{#000,#fff Pd
{{{-5

팔라듐
]]
[[은|{{{#000,#fff Ag
{{{-5

]]
[[카드뮴|{{{#000,#fff Cd
{{{-5

카드뮴
]]
[[인듐|{{{#000,#fff In
{{{-5

인듐
]]
[[주석(원소)|{{{#000,#fff Sn
{{{-5

주석
]]
[[안티모니|{{{#000,#fff Sb
{{{-5

안티모니
]]
[[텔루륨|{{{#000,#fff Te
{{{-5

텔루륨
]]
[[아이오딘|{{{#000,#fff I
{{{-5

아이오딘
]]
[[제논(원소)|{{{#d00,#fc3 Xe
{{{-5

제논
]]
6
[[세슘|{{{#000,#fff Cs
{{{-5

세슘
]]
[[바륨|{{{#000,#fff Ba
{{{-5

바륨
]]
(란)
[[하프늄|{{{#000,#fff Hf
{{{-5

하프늄
]]
[[탄탈럼|{{{#000,#fff Ta
{{{-5

탄탈럼
]]
[[텅스텐|{{{#000,#fff W
{{{-5

텅스텐
]]
[[레늄|{{{#000,#fff Re
{{{-5

레늄
]]
[[오스뮴|{{{#000,#fff Os
{{{-5

오스뮴
]]
[[이리듐|{{{#000,#fff Ir
{{{-5

이리듐
]]
[[백금|{{{#000,#fff Pt
{{{-5

백금
]]
[[금|{{{#000,#fff Au
{{{-5

]]
[[수은|{{{#00f,#3cf Hg
{{{-5

수은
]]
[[탈륨|{{{#000,#fff Tl
{{{-5

탈륨
]]
[[납|{{{#000,#fff Pb
{{{-5

]]
[[비스무트|{{{#000,#fff Bi
{{{-5

비스무트
]]
[[폴로늄|{{{#000,#fff Po
{{{-5

폴로늄
]]
[[아스타틴|{{{#000,#fff At
{{{-5 __

아스타틴
__]]
[[라돈|{{{#d00,#fc3 Rn
{{{-5

라돈
]]
7
[[프랑슘 |{{{#000,#fff Fr
{{{-5 __

프랑슘
__]]
[[라듐 |{{{#000,#fff Ra
{{{-5

라듐
]]
(악)
[[러더포듐 |{{{#000,#fff Rf
{{{-5 __

러더포듐
__]]
[[더브늄 |{{{#000,#fff Db
{{{-5 __

더브늄
__]]
[[시보귬 |{{{#000,#fff Sg
{{{-5 __

시보귬
__]]
[[보륨 |{{{#000,#fff Bh
{{{-5 __

보륨
__]]
[[하슘 |{{{#000,#fff Hs
{{{-5 __

하슘
__]]
[[마이트너륨 |{{{#000,#fff Mt
{{{-5 __

마이트너륨
__]]
[[다름슈타튬 |{{{#000,#fff Ds
{{{-5 __

다름슈타튬
__]]
[[뢴트게늄 |{{{#000,#fff Rg
{{{-5 __

뢴트게늄
__]]
[[코페르니슘 |{{{#00f,#3cf Cn
{{{-5 __

코페르니슘
__]]
[[니호늄 |{{{#000,#fff Nh
{{{-5 __

니호늄
__]]
[[플레로븀 |{{{#00f,#3cf Fl
{{{-5 __

플레로븀
__]]
[[모스코븀 |{{{#000,#fff Mc
{{{-5 __

모스코븀
__]]
[[리버모륨 |{{{#000,#fff Lv
{{{-5 __

리버모륨
__]]
[[테네신 |{{{#000,#fff Ts
{{{-5 __

테네신
__]]
[[오가네손 |{{{#000,#fff Og
{{{-5 __

오가네손
__]]
(란)
[[란타넘|{{{#000,#fff La
{{{-5

란타넘
]]
[[세륨|{{{#000,#fff Ce
{{{-5

세륨
]]
[[프라세오디뮴|{{{#000,#fff Pr
{{{-5

프라세오디뮴
]]
[[네오디뮴|{{{#000,#fff Nd
{{{-5

네오디뮴
]]
[[프로메튬|{{{#000,#fff Pm
{{{-5 __

프로메튬
__]]
[[사마륨|{{{#000,#fff Sm
{{{-5

사마륨
]]
[[유로퓸|{{{#000,#fff Eu
{{{-5

유로퓸
]]
[[가돌리늄|{{{#000,#fff Gd
{{{-5

가돌리늄
]]
[[터븀|{{{#000,#fff Tb
{{{-5

터븀
]]
[[디스프로슘|{{{#000,#fff Dy
{{{-5

디스프로슘
]]
[[홀뮴|{{{#000,#fff Ho
{{{-5

홀뮴
]]
[[어븀|{{{#000,#fff Er
{{{-5

어븀
]]
[[툴륨|{{{#000,#fff Tm
{{{-5

툴륨
]]
[[이터븀|{{{#000,#fff Yb
{{{-5

이터븀
]]
[[루테튬|{{{#000,#fff Lu
{{{-5

루테튬
]]
(악)
[[악티늄|{{{#000,#fff Ac
{{{-5

악티늄
]]
[[토륨|{{{#000,#fff Th
{{{-5

토륨
]]
[[프로트악티늄|{{{#000,#fff Pa
{{{-5

프로트악티늄
]]
[[우라늄|{{{#000,#fff U
{{{-5

우라늄
]]
[[넵투늄|{{{#000,#fff Np
{{{-5 __

넵투늄
__]]
[[플루토늄|{{{#000,#fff Pu
{{{-5 __

플루토늄
__]]
[[아메리슘|{{{#000,#fff Am
{{{-5 __

아메리슘
__]]
[[퀴륨|{{{#000,#fff Cm
{{{-5 __

퀴륨
__]]
[[버클륨|{{{#000,#fff Bk
{{{-5 __

버클륨
__]]
[[캘리포늄|{{{#000,#fff Cf
{{{-5 __

캘리포늄
__]]
[[아인슈타이늄|{{{#000,#fff Es
{{{-5 __

아인슈타이늄
__]]
[[페르뮴|{{{#000,#fff Fm
{{{-5 __

페르뮴
__]]
[[멘델레븀|{{{#000,#fff Md
{{{-5 __

멘델레븀
__]]
[[노벨륨|{{{#000,#fff No
{{{-5 __

노벨륨
__]]
[[로렌슘|{{{#000,#fff Lr
{{{-5 __

로렌슘
__]]
범례

배경색: 원소 분류
알칼리 금속
]]
[[알칼리 토금속 |{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[란타넘족|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[악티늄족|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[전이 원소 |{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[전이후 금속 |{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[준금속|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[비금속|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[비금속|{{{#000,#fff
display:inline-block; width:7em; margin:-25px 0"
[[비활성 기체 |{{{#000,#fff

밑줄: 자연계에 없는 인공 원소 혹은 극미량으로만 존재하는 원소로, 정확한 원자량을 측정하기 어려움.
글자색: 표준 상태(298 K(25 °C), 1기압)에서의 원소 상태, ● 고체 · ● 액체 · ● 기체




32Ge
저마늄 / 게르마늄* >

 | 
Germanium

분류
준금속
상태
고체
원자량
72.630
밀도
5.32 g/cm3
녹는점
938.25 °C
끓는점
2833 °C
용융열
36.94 kJ/mol
증발열
334 kJ/mol
원자가
4
이온화에너지
762, 1537.5, 3302.1 kJ/mol
전기음성도
2.01
전자친화도
119 kJ/mol
발견
C. Winkler (1886)
CAS 등록번호
7440-56-4
이전 원소
갈륨(Ga)
다음 원소
비소(As)
*실생활에서는 게르마늄 쪽이 사용 빈도가 높다.



1. 개요
2. 역사
3. 표기 문제
4. 용도
4.1. 건강 게르마늄?[1]
5. 둘러보기


1. 개요[편집]


파일:attachment/Ge-usage.jpg
파일:germanium.jpg
주기율표 14족에 속하는 탄소족 원소이다. 반도체 정류기의 핵심 재료이다.


2. 역사[편집]


1886년, 독일의 화학자 클레멘스 알렉산더 빙클러(Clemens Alexander Winkler)가 은광석 아지로다이트(Ag8GeS6)에서 분리하는 데 성공했다. 빙클러는 당초 게르마늄을 비금속이라고 생각하고 있었으나, 실제로는 드미트리 멘델레예프가 '에카규소'라고 예언했던 준금속이었다. 더군다나 녹는점과 산화 형태 등 물리적·화학적 성질까지 멘델레예프가 예언했던 것과 아주 비슷하거나 정확하게 맞아떨어져, 게르마늄의 발견이 멘델레예프를 일약 스타로 띄우는 계기가 되기도 한다.


3. 표기 문제[편집]


게르마늄은 라틴어/독일어식 발음이다. 대한화학회에서는 2000년대 중반에 들어 화학 용어를 영어식으로 바꾸면서 게르마늄을 저마늄으로 쓰기를 권장하고 있다. 영어 단어 'germanium'의 발음은 /d͡ʒəːɹmeɪniəm/이니까 저메이니엄 이라고 읽는게 실제 발음에 더 가깝다고 할 수 있지만 사실상 발음해 보면 저메늄 정도로 줄여지고 이것을 저마늄으로 부르는 것이다. 실제로는 게르마늄이라고 압도적으로 많이 표기하고 부른다.


4. 용도[편집]


공업적인 용도로는 생산량의 절반이 광섬유에 쓰이고 있다. 산화 게르마늄은 굴절율이 매우 높고 (4.0) 분산율이 적기 때문에 광섬유의 코어로 쓰이고 있다. 그 외에 광각렌즈 등 고급 광학기기에 쓰인다. 특히 적외선에 대해 투명하므로[2] 적외선 렌즈나 고감도 열영상장비 등에 널리 쓰이고 있다.

과거에 게르마늄은 반도체의 역사의 초창기에 한때 유력한 반도체 소재로 널리 쓰였다. 게르마늄은 실리콘보다 용해점이 낮기 때문에 가공이나 순수한 단결정을 만들기 쉬워서 초기에는 트랜지스터 등 반도체를 주로 게르마늄으로 만들었다. 소니에서 만든 최초의 트랜지스터 라디오에도 게르마늄이 쓰고 잭 킬비가 세계 최초로 만든 집적 회로 또한 게르마늄으로 만들었다. 하지만 게르마늄은 고온에서는 반도체 기능을 잃어서 대출력의 반도체를 만들기 어려웠다. 하지만 그 후 실리콘(규소)이 소자의 온도 지속성에서 게르마늄보다 뛰어나다는 것이 판명되어 현재는 규소가 전자기기의 중심을 담당하고 있다. 실리콘은 용해점이 높아서 가공하고 만들기는 어렵지만 고온에서도 잘 동작하므로 큰 출력을 낼 수 있다.

게르마늄 다이오드 등 게르마늄 반도체는 순방향 바이어스 전압(0.3V)이 실리콘 다이오드 (0.7V) 의 절반 이하이라 순방향 시 손실되는 전압이나 전력량이 낮아 발열이 적고 효율이 높아서 소전력 고효율 정파 회로를 만들 수 있다. 다만 접합 최대온도가 낮아 고출력을 만들기 어렵다. 그래서 한동안은 소출력 신호용 트랜지스터는 생산비가 싼 게르마늄, 대출력 파워용은 주로 생산비가 비싼 실리콘 트랜지스터가 쓰였지만 실리콘이 대세가 되며 생산비가 게르마늄보다 낮아지자 게르마늄 트랜지스터는 점차 퇴출되었다.

하지만 전혀 쓰이지 않게 된 것은 아니고, P형 MOSFET의 채널 층 옆에 SiGe를 넣으면 Si와 Ge의 격자상수 차이에 따라 스트레인을 받고 이에 따라서 정공의 이동도가 높아지는 성질이 있으므로, 인텔에서 사용하고 있다. 지금은 대부분 단종되어 중고물량도 구하기 힘든것이 대부분이다. 빈티지 음향장비를 만드는 데 주로 쓰였는데, 요즘엔 게르마늄 TR을 구하기가 너무나도 힘들어져서 대부분 단종되었다. 그래도 AC128쯤은 찾아보면 구할 수 있긴 하다. 다만 원하는 HFE의 물건을 구하려면 상당히 고생할 것이다. 그리고 2000년 중반부터 빈티지 음향기기와 기타베이스 기타에 쓰는 빈티지 기타 이펙터가 주목을 받아서. 수요가 많은 소자들은 진공관처럼 복각생산을 하는 편이다.

이와는 별개로 다이오드 쪽에서는 게르마늄 다이오드가 굉장히 구하기 쉬운 편이며, 이에 종종 게르마늄을 사용하는 광석 라디오 등을 만들때 쓰이기도 한다. 가격은 10개 50~100원 수준. 현재는 더 낮은 순방향 바이어스 (0.2V) 를 가지고 값도 싼 쇼트키 베리어 다아오드로 거의 대체할 수 있어서 특수한 용도 외는 잘 쓰이지 않는다. 다만 역방향 전압이나 역방향 누설 전류 특성은 게르마늄 다이오드가 쇼트키 다이오드 보다 더 우위에 있어서 빈티지 음향기기 등 저잡음 저왜곡 등 특수 용도로 쓸 수 있다. 1-2 A 정도의 전류를 흘릴 수 있는 게르마늄 다이오드는 순방향 바이어스 전압이 낮아 고효율 정류회로 만들 수 있어 쓰이기도 하지만 이 용도로는 쇼트키 배이어 다이오드가 더 대전류를 다룰 수 있다.

게르마늄을 골격으로 하는 고분자인 폴리저메인(Polygermane)이 있다. 게르마늄이 반도체이기 때문에 폴리저메인 또한 전도성을 띤다.


4.1. 건강 게르마늄?[3][편집]



TV조선에서 밝힌 게르마늄 사기의 실체. 특히 2분 08초, 한양대학교 화학과 최종훈 교수의 설명을 참조.

시중에 게르마늄 칩을 박은 팔찌(통칭 게르마늄 팔찌)나 목걸이 등의 장신구를 팔면서 건강에 도움이 된다는 식으로 설명하는 경우가 있는데, 이는 형태, 모양, 품질을 불문하고 모두 사기다. "게르마늄 팔찌가 건강에 좋다는 건 가짜 뉴스" 이러한 상품 전략들은 1980년대 일본에서 유입된 것이다. 가격대가 수십만 원을 호가한다면 게르마늄은 진짜 게르마늄이 맞긴 하겠지만 문제는 그 어떤 효능도 사실로 밝혀진 바가 없다.

이 종류의 마케팅에서는 항상 수치보다 경험담만을 올려놓는데, "혈액 순환이 좋아졌다", "맥박이 고르게 뛴다", "피로가 사라졌다" 등의 이야기다.[4] 경우에 따라서는 암이나 다른 질병이 나았다는 어이없는 이야기도 있다. 물론 모두 물건을 팔기 위한 상술로, 어떠한 과학적 효능도 입증되지 않은 거짓이다. 말마따나 게르마늄이 그렇게 몸에 좋다면 전국의 병실과 요양원 벽은 죄다 게르마늄으로 도배되어 있었을 것이다. 한 업체는 국제 학술지에 그 효능을 검증했다며 과학적 규명 없이 특정 제품의 효과가 가장 뛰어나다고 주장했다가 까였다. (50달러를 내면 일주일 이내에 임팩트 팩터(논문 영향력 지수)를 주겠다고 광고를 했다.) 가끔 이름 모를 의사나 과학자 등을 거론하면서 은근슬쩍 넘어가기도 하는데, 모두 거짓말이나 마이너한 논문의 맥락 없는 인용에 불과하다.

가장 대표적인 효능이라고 알려진 원적외선전자기파의 일종이다. 우리 눈에 보이는 색깔의 빛을 가시광선, 빨간색 파장 바깥에 있는 빛을 적외선이라고 하고, 이 중 가장 파장이 긴 적외선을 원적외선이라고 한다. 이 빛은 게르마늄이 발산하는 것보다 태양에서 쏟아지는 양이 비교도 안 될 만큼 많다. 원적외선을 집중적으로 쐬는 사우나의 효능도 아직 제대로 인과관계가 밝혀지지 않은 판국에 수 cm의 칩에서 나오는 원적외선은 인체에 전혀 도움이 되지 않는다고 봐도 무방하다. 그렇게 원적외선을 쐬고 싶으면 차라리 출근 시간 지하철을 타는 게 훨씬 더 강하다. 사람 몸에서 36.5℃로 나오는 원적외선을 단돈 1250원으로 쐴 수 있다.

절대영도 이상의 온도를 가진 모든 물체는 원적외선을 방출하는데도 게르마늄이 원적외선과 엮여버린 이유는 원적외선을 잘 투과하는 성질 때문일 것이다. 일반 유리는 적외선이 잘 통과하지 못하기 때문에 적외선을 포착해야 하는 야간투시경의 렌즈는 게르마늄 렌즈로 만들어진다. 이런 것들에다가 ~늄 자로 끝나는 어감에서 오는 신비감 등이 복합적으로 얽히면서 독일의 과학력은 세계 제이이이이이이일! 사기꾼들의 손에 의해 신비의 물질로 자리잡게 되었다.

다른 유사과학들과 섞기도 한다. # 게르마늄 + 네오디뮴 + 원적외선 + 음이온.


5. 둘러보기[편집]






파일:크리에이티브 커먼즈 라이선스__CC.png 이 문서의 내용 중 전체 또는 일부는 2023-12-15 17:07:23에 나무위키 저마늄 문서에서 가져왔습니다.

[1] 이 종류의 마케팅에서는 저마늄 대신 거의 대부분 게르마늄으로 표기한다.[2] 예시[3] 이 종류의 마케팅에서는 저마늄 대신 거의 대부분 게르마늄으로 표기한다.[4] 이런 문제들이 병을 일으키면 고지혈증, 동맥경화, 부정맥, 만성피로 등으로 이야기할 수 있는데 이런 병 치료를 게르마늄 따위에 의지하다간 잘못하면 목숨이 위험하다.