[[분류:선형대수학]] [include(틀:선형대수학)] [목차] == 개요 == 방데르몽드 행렬(Vandermonde matrix)은 프랑스의 수학자 알렉상드르 테오필 방데르몽드(Alexandre-Théophile Vandermonde,1735~1796)의 이름을 따서 지은 [[행렬(수학)|행렬]]이다.[* (MacTutor) Alexandre-Théophile Vandermonde [[https://mathshistory.st-andrews.ac.uk/Biographies/Vandermonde/]]][* NOTICE SUR L'ÉLIMINATION.Suite. ( V. t . I , p. 125. ) FONTAINE , VANDERMONDE , LAPLACE [[http://www.numdam.org/article/NAM_1846_1_5__153_1.pdf]]] [[오귀스탱루이 코시]]등이 일반화하여 기술한 바 있다. 간단히 말하면 [math(F)]와 [math(\alpha_1, \alpha_2, \cdots, \alpha_m \in F)]에 대해, 각 행이 초항이 1인 [[등비수열]]로 주어진 행렬이다. 이를 표현하면 아래와 같다. [math(V=\begin{pmatrix}1 & \alpha_1 & \alpha_1^2 & \cdots &\alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \cdots & \alpha_m^{n-1} \end{pmatrix})] == 행렬식 == 처음 몇 개의 [math(n)]에 대해, [math(\det V)]의 값은 다음과 같다. [math(\displaystyle (n=2)\quad\det\begin{pmatrix} 1 & a_1 \\ 1 & a_2 \end{pmatrix} = a_2 - a_ 1 )] [math(\displaystyle (n=3)\quad\det\begin{pmatrix} 1 & a_1 & a_1^2 \\ 1 & a_2 & a_2^2 \\ 1 & a_3 & a_3^2 \end{pmatrix})] [math(\displaystyle \qquad\qquad =\det\begin{pmatrix} 1 & a_1 & a_1^2 \\ (1-1) & \left(a_2-a_1 \right) & \left(a_2^2 -a_1^2\right) \\ 1 & a_3 & a_3^2 \end{pmatrix} \quad )] ([[행연산]] [math(R_2 \leftarrow R_2-R_1)]) [math(\displaystyle \qquad\qquad =\det\begin{pmatrix} 1 & a_1 & a_1^2 \\ 0 & \left(a_2-a_1 \right) & \left(a_2^2 -a_1^2\right) \\ 0 & \left(a_3-a_1 \right) & \left(a_3^2 -a_1^2\right) \end{pmatrix} \quad)] (행연산 [math(R_3 \leftarrow R_3-R_1 )]) [math(\displaystyle \qquad\qquad = 1 \cdot \left( \left(a_2 -a_1 \right) \left(a_3^2 -a_1^2 \right) - \left(a_2^2 -a_1^2 \right) \left(a_3 -a_1 \right) \right) - 0(0) + 0(0))] [math(\displaystyle \qquad\qquad= \left(a_2 -a_1 \right) \left(a_3 -a_1 \right) \cdot \left( \left(a_3 + a_1 \right) - \left(a_2 + a_1 \right) \right) )] [math(\displaystyle \qquad\qquad = \left(a_2 -a_1 \right) \left(a_3 -a_1 \right) \left( a_3 - a_2 \right) )] 일반화하자. [[행렬식]]의 정의로부터 [math(\det V= \sum_{\sigma \in S_n} \mathrm{sgn} \left(\sigma\right) \prod_{i=1}^n (\alpha_{\sigma(i)})^i )]이고, 이는 [math(\alpha_1, \cdots, \alpha_n)]에 대한 차수가 [math(\frac{n(n+1)}{2})]인 동차다항식이다. 또한 [math(\alpha_i = \alpha_j\ (i\ne j))]라고 가정하면, [math(V)]의 [math(i)]행과 [math(j)]행이 같으므로 [math(\det V = 0)]이다. 따라서, [math(\det V)]는 [math(\alpha_i - \alpha_j)]를 [[인수정리|인수로 가진다]]. 이것이 임의의 서로 다른 [math(i,j)]에 대해 성립하므로, [math(\displaystyle \det V = Q(\alpha_1, \cdots, \alpha_n) \prod_{i < j} (\alpha_i - \alpha_j))] 를 만족하는 다항식 [math(Q(\alpha_1, \cdots, \alpha_n))]이 존재한다. 우변에서 서로 다른 [math(i, j)]를 선택할 수 있는 경우의 수가 [math(\binom n 2=\frac{n(n+1)}{2})]고, 양변의 차수를 비교하면 [math(Q)]는 상수이다. 적당한 항을 하나 선택해서 (e.g. [math(\alpha_1^1 \cdots \alpha_n^n)]) 양변의 계수를 비교해 [math(Q=1)]임을 알 수 있다. 따라서, 임의의 [math(n)]에 대해 방데르몽드 행렬의 행렬식은 다음과 같이 주어진다. [math(\displaystyle \det V = \prod_{i < j} (\alpha_i - \alpha_j))] 이로부터 [math(V)]가 [[가역행렬|가역]]일 필요충분조건은 [math(\alpha_1,\cdots,\alpha_n)]이 서로 다른 값을 가지는 것임을 알 수 있다. [math(n)]개의 점을 지나는 (n-1)차 [[라그랑주 보간법|보간 다항식]]을 항상 찾을 수 있는 것도 이 때문이다. == 수직 행렬 == 방데르몽드 행렬식 [math( \left(a_2 -a_1 \right) \left(a_3 -a_1 \right) \left( a_3 - a_2 \right) )] 으로부터 [math( V= \begin{pmatrix}a_1^0 & \color{red}{a_1^1} & a_1^2 & \cdots &a_1^{n-1} \\ a_2^0 & \color{red}{a_2^1} & a_2^2 & \cdots & a_2^{n-1} \\ a_3^0 & \color{red}{a_3^1} & a_3^2 & \cdots & a_3^{n-1} \\ \vdots & \vdots & \vdots & \ & \vdots \\ a_m^0 & \color{red}{a_m^1} & a_m^2 & \cdots & a_m^{n-1} \end{pmatrix} )] 을 조사하고 수직행렬의 성질을 확인할수있다. == 방데르몽드 행렬의 변형 == 방데르몽드 행렬을 등비수열에서 [[등차수열]]로 변형하고 다음과 같은 [[힙 알고리즘]] 및 [[군론]](group theory)을 만족하는 등차수열 방데르몽드 행렬을 얻을수있다. 초항(1st term)및 공차(common difference)가 [math(1)]인 등차수열[math((a+d)_n)]의 [math(n\times n)]행렬. [math( V= \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots \\ 1 & 2 & 3 & 4 & \cdots \\ 1 & 2 & 3 & 4 & \cdots \\ 1 & 2 & 3 & 4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \cdots \\ \end{pmatrix} )] == 관련 문서 == * [[대각행렬]] * [[크라메르 공식]]