[include(틀:해석학·미적분학)] [목차] ||<#FFF> [[파일:디랙델타함수 시퀀스.svg|width=100%]] || || '''[[디랙 델타 함수]]를 정의하는 기반이 되는 함수들 중[br][math(\boldsymbol{y})]축 대칭함수(짝함수)들의 예시''' || == 개요 == {{{+1 [[對]][[稱]][[函]][[數]] / even and odd functions[* [[https://en.wikipedia.org/wiki/Symmetric_function|symmetric function]]이라는 것도 있기는 하지만 이것은 [[대칭식|각 변수의 자리를 바꿔도 성립하는 다변수함수]]라는 다른 뜻이다.]}}} [[함수]]의 개형이 대칭을 이루는 함수를 뜻한다. 크게 홀함수[* 과거엔 일본식 한자어의 영향으로 기함수([[奇]][[函]][[數]])라는 용어를 사용했다.](odd function)와 짝함수[* 과거엔 역시 마찬가지로 우함수([[偶]][[函]][[數]])라는 용어를 사용했다.](even function)로 나뉜다. 참고로 2018 개정 고등과정에서는 홀함수와 짝함수라는 표현을 정식 명칭으로 사용하되 그 별칭으로 기함수와 우함수라는 표현을 혼용하도록 되어있다. == 정의 == || * 함수 [math(y=f(x))]가 정의역의 모든 [math(x)]에 대하여 * [math(f(-x)=f(x))]이면 '''짝함수'''(우함수) * [math(f(-x)=-f(x))]이면 '''홀함수'''(기함수) || 홀함수는 다시 [math(f(x)>f(-x))]인 함수와 [math(f(x)0)]) 아래는 이 둘의 예시이다. [math(\sin(x), \tan(x))]처럼 이 둘에 속하지 않는 함수들도 있다. ||<#FFFFFF> [[파일:namu_erf(x)_그래프.png|height=222]] ||<#FFFFFF> [[파일:브링근호_그래프_NeW.png|height=222]] || || [math(f(x)>f(-x))] || [math(f(x)0)]인 부분과 [math(x<0)]인 부분으로 나누어 각각을 정의역으로 하는 두 함수로 만들 때, 이들 각각의 치역이 서로 같다. 홀함수의 경우 이들 두 함수의 치역은 부호가 서로 반대이다. 즉 [math(y_1)]이 이들 두 함수 중 어느 한 함수의 치역에 속할 때, [math(-y_1)]은 다른 한 함수의 치역에 속한다. 수에서의 홀짝과는 특성이 다른데, 이는 다음과 같다. 여기서는 임의의 상수 [math(k, j)]에 대하여 임의의 홀함수를 [math(o_1(x), o_2(x))], 임의의 짝함수를 [math(e_1(x), e_2(x))]라고 하자. * [math(k)] × 홀함수 = 홀함수, [math(k)] × 짝함수 = 짝함수 * [math(ko_1(-x) = k(-o_1(x)) = -ko_1(x))]이므로 [math(ko_1(x))]는 홀함수이다. * [math(ke_1(-x) = k(e_1(x)) = -ke_1(x))]이므로 [math(ke_1(x))]는 짝함수이다. * 홀함수, 짝함수에서 [math(x)]를 모두 [math(kx)]로 바꾼 함수는 각각 홀함수, 짝함수 * [math(o_1(k(-x)) = o_1(-kx) = -o_1(kx))]이므로 [math(o_1(kx))]는 홀함수이다. * [math(e_1(k(-x)) = e_1(-kx) = e_1(kx))]이므로 [math(e_1(kx))]는 짝함수이다. * 임의의 함수에서 [math(x)]를 모두 [[절댓값|[math(|x|)]]]로 바꾼 함수는 짝함수[* [math(|x|)]는 짝함수이므로 아래의 [[대칭함수#합성함수|합성함수 문단]]에서 알 수 있는 내용이다.] * 이 함수에 [math(x)] 대신 [math(-x)]를 넣어도 [math(|x|=|-x|)]이므로 그 값이 같아지기 때문이다. * [math(f(x))]가 홀함수, 짝함수이면 [math(f(-x))]도 각각 홀함수, 짝함수 * [math(o_1(-(-x)) = o_1(x) = -o_1(-x))]이므로 [math(o_1(-x))]는 홀함수이다. * [math(e_1(-(-x)) = e_1(x) = e_1(-x))]이므로 [math(e_1(-x))]는 짝함수이다. * 또는 [math(f(x), f(-x))]가 서로 y축 대칭이라는 것을 생각할 수도 있다. * 홀함수 + 홀함수 = 홀함수, 홀함수 - 홀함수 = 홀함수, 짝함수 + 짝함수 = 짝함수, 짝함수 - 짝함수 = 짝함수 * [math(o_1(-x)+o_2(-x) = (-o_1(x))+(-o_2(x)) = -(o_1(x)+o_2(x)))]이므로 [math(o_1(x)+o_2(x))]는 홀함수이다. * [math(o_1(-x)-o_2(-x) = (-o_1(x))-(-o_2(x)) = (-o_1(x))+o_2(x) = -(o_1(x)-o_2(x)))]이므로 [math(o_1(x)-o_2(x))]는 홀함수이다. * [math(e_1(-x)+e_2(-x) = (e_1(x))+(e_2(x)) = e_1(x)+e_2(x))]이므로 [math(e_1(x)+e_2(x))]는 짝함수이다. * [math(e_1(-x)-e_2(-x) = (e_1(x))-(e_2(x)) = e_1(x)-e_2(x))]이므로 [math(e_1(x)-e_2(x))]는 짝함수이다. * 홀함수 - 홀함수 = 홀함수, 짝함수 - 짝함수 = 짝함수의 경우 홀함수 + (-1 × 홀함수) = 홀함수, 짝함수 + (-1 × 짝함수) = 짝함수를 이용하여 더 간단히 증명할 수도 있다. * [math(k)] × 홀함수 + [math(j)] × 홀함수 = 홀함수, [math(k)] × 짝함수 + [math(j)] × 짝함수 = 짝함수. 즉 홀함수, 짝함수끼리의 선형 결합도 각각 홀함수, 짝함수가 됨을 의미한다. * [math(k)] × 홀함수 + [math(j)] × 홀함수 = 홀함수 + 홀함수 = 홀함수 * [math(k)] × 짝함수 + [math(j)] × 짝함수 = 짝함수 + 짝함수 = 짝함수 * 홀함수 × 홀함수 = 짝함수, 홀함수 ÷ 홀함수 = 짝함수 * [math(o_1(-x)o_2(-x) = (-o_1(x))\times(-o_2(x)) = o_1(x)o_2(x))]이므로 [math(o_1(x)o_2(x))]는 짝함수이다. * [math(o_1(-x)/o_2(-x) = (-o_1(x))/(-o_2(x)) = o_1(x)/o_2(x))]이므로 [math(o_1(x)/o_2(x))]는 짝함수이다. * 홀함수 × 짝함수 = 홀함수, 홀함수 ÷ 짝함수 = 홀함수, 짝함수 ÷ 홀함수 = 홀함수 * [math(o_1(-x)e_1(-x) = -o_1(x)\times e_1(x) = -o_1(x)e_1(x))]이므로 [math(o_1(x)e_1(x))]는 홀함수이다. * [math(o_1(-x)/e_1(-x) = -o_1(x)/e_1(x) = -(o_1(x)/e_1(x)))]이므로 [math(o_1(x)/e_1(x))]는 홀함수이다. * [math(e_1(-x)/o_1(-x) = e_1(x)/(-o_1(x)) = -(e_1(x)/o_1(x)))]이므로 [math(e_1(x)/o_1(x))]는 홀함수이다. * 짝함수 × 짝함수 = 짝함수, 짝함수 ÷ 짝함수 = 짝함수 * [math(e_1(-x)e_2(-x) = (e_1(x))\times(e_2(x)) = e_1(x)e_2(x))]이므로 [math(e_1(x)e_2(x))]는 짝함수이다. * [math(e_1(-x)/e_2(-x) = (e_1(x))/(e_2(x)) = e_1(x)/e_2(x))]이므로 [math(e_1(x)/e_2(x))]는 짝함수이다. * 여러 개의 홀함수와 짝함수의 곱의 경우, 홀함수를 곱한 횟수가 짝수이면 짝함수, 홀수이면 홀함수가 된다. * 이 곱을 홀함수 × ... × 홀함수 × 짝함수 × ... × 짝함수로 나타낼 때 다음과 같다. * 홀함수 × ... × 홀함수 부분은 홀함수 × 홀함수 = 짝함수, 짝함수 × 홀함수 = 홀함수이므로 곱해진 홀함수의 개수가 홀수 개이면 홀함수, 짝수 개이면 짝함수가 된다. * 짝함수 × ... × 짝함수 부분은 짝함수 × 짝함수 = 짝함수이므로 짝함수이다. * 따라서 홀함수가 홀수 번 곱해진 경우 최종적으로 홀함수 × 짝함수 = 홀함수이고, 짝수 번 곱해진 경우 최종적으로 짝함수 × 짝함수 = 짝함수가 된다. * 이것을 응용하면 짝함수의 거듭제곱은 무조건 짝함수이고, 홀함수의 경우 홀수 번 거듭제곱은 홀함수, 짝수 번 거듭제곱은 짝함수임을 알 수 있다. 홀함수를 [math(a)]가 홀수인 멱함수에, 짝함수를 [math(a)]가 짝수인 멱함수에 대응시키면 지수법칙에 따라 위의 곱하기(×)가 홀수(*)짝수 연산의 더하기(+)에, 나누기(÷)가 홀수(*)짝수 연산의 빼기(-)에 대응하는 것이라 생각하면 이해하기 쉽다. 정의역이 x=0에 대해 좌우대칭인 임의의 함수를 아래와 같이 짝함수와 홀함수의 합으로 유일하게 나타낼 수 있다. f(x)=\dfrac{f(x)+f(-x)}{2}+\dfrac{f(x)-f(-x)}{2} [[연속함수]]일 경우 [[멱급수]]로 전개할 수 있는 함수가 된다.[* 디리클레 함수는 ''완전 불연속''인 짝함수이므로 멱급수 전개가 불가능하다. [[푸리에 급수]]로는 전개 가능.] 홀함수는 홀수 지수의 [[다항함수]]의 선형결합으로, 짝함수는 짝수 지수의 다항함수의 선형결합으로 나타낼 수 있다. === [[합성함수]] === [[합성함수]]의 경우, 홀함수[math(\circ)]짝함수이든 짝함수[math(\circ)]홀함수이든 무조건 짝함수가 된다. 그런데, 홀함수끼리 합성하면 홀함수가 된다. 함수의 합성을 일종의 곱셈으로 이해하면, 짝수를 임의의 자연수에 곱하면 짝수가 되고, 홀수 곱하기 홀수는 홀수가 되는 점에 대응시켜보면 쉽게 이해할 수 있다. * [math((o_1 \circ e_1)(-x) = o_1(e_1(-x)) = o_1(e_1(x)) = (o_1 \circ e_1)(x))]이므로 [math((o_1 \circ e_1)(x))]는 짝함수이다. [math((e_1 \circ o_1)(x))]도 마찬가지. * [math((o_1 \circ o_2)(-x) = o_1(o_2(-x)) = o_1(-o_2(x)) = -o_1(o_2(x)) = -(o_1 \circ o_2)(x))]이므로 [math((o_1 \circ o_2)(x))]는 홀함수이다. 이것을 더 확장시켜 생각해 보면, 홀함수와 짝함수만을 합성시킨 합성함수의 경우 이들 중 짝함수가 1개 이상 있으면 짝함수이고, 홀함수만 합성되어 있으면 홀함수가 된다는 것을 알 수 있다. 임의의 함수를 합성할 때, 처음으로 합성되는 함수가 짝함수인 경우 무조건 짝함수가 된다. 그러나 짝함수가 처음으로 합성되는 함수가 아닌 경우이면 무조건 짝함수가 되지는 않는다. * [math((f \circ e_1)(-x) = f(e_1(-x)) = f(e_1(x)) = (f \circ e_1)(x))]이므로 [math((f \circ e_1)(x))]는 짝함수이다. * 예를 들어 [math(f(x)=x+1, e_1(x)=x^2)]일 때 다음과 같다. * [math((f \circ e_1)(-x) = f(e_1(-x)) = f((-x)^2) = f(x^2) = f(e_1(x)) = (f \circ e_1)(x))]이므로 [math((f \circ e_1)(x))]는 짝함수이다. * [math((e_1 \circ f)(-x) = e_1(f(-x)) = e_1(-x+1) = (-x+1)^2 = x^2-2x+1)]이고 [math((e_1 \circ f)(x) = e_1(f(x)) = e_1(x+1) = (x+1)^2 = x^2+2x+1)]이므로 [math((e_1 \circ f)(-x) \ne (e_1 \circ f)(x))]이다. 따라서 [math((e_1 \circ f)(x))]는 짝함수가 아니다. 또한 처음으로 합성되는 함수가 홀함수이더라도 무조건 홀함수가 되지는 않는다. 홀함수가 나중에 합성되더라도 마찬가지이다. * 예를 들어 [math(f(x)=x+1, o_1(x)=x^3)]일 때, [math((f \circ o_1)(-x) = f(o_1(-x)) = f((-x)^3) = f(-x^3) = -x^3+1)]이고 [math((f \circ o_1)(x) = f(o_1(x)) = f(x^3) = x^3+1)]이므로 [math((f \circ o_1)(-x) \ne -(f \circ o_1)(x))]이다. 따라서 [math((f \circ o_1)(x))]는 홀함수가 아니다. [math((o_1 \circ f)(-x) = o_1(f(-x)) = o_1(-x+1) = -x^3+3x^2-3x+1)]이므로 [math((o_1 \circ f)(x))] 역시 홀함수가 아니다. 짝함수와 홀함수만을 합성하더라도 [[교환법칙]]이 성립한다는 것이 보장되지는 않는다. 예를 들어 [math(f(x)=x^2, g(x)=\sin(x))]일 때, [math(f(x))]는 짝함수이고 [math(g(x))]는 홀함수이지만 [math((f\circ g)(x) = \sin^2(x), (g\circ f)(x) = \sin(x^2))]이고 이 둘은 서로 다른 함수이다. 이것을 더 확장시키면, 임의의 함수를 합성할 때 합성되는 순서가 '''짝함수를 적어도 1개 포함한 1개 이상의 홀함수와 짝함수 → 임의의 함수'''일 때 짝함수가 된다는 것을 알 수 있다. 짝함수를 적어도 1개 포함한 1개 이상의 홀함수와 짝함수를 먼저 합성시킨 함수는 짝함수이므로 나중에 '''짝함수 → 임의의 함수''' 순으로 합성하는데, 이때 처음으로 합성되는 함수가 짝함수인 경우에 해당하므로 결국 짝함수가 되기 때문이다. * 예를 들어 [math((f \circ o_1 \circ e_1 \circ o_2)(-x) = f(o_1(e_1(o_2(-x)))) = f(o_1(e_1(-o_2(x)))) = f(o_1(e_1(o_2(x)))) = (f \circ o_1 \circ e_1 \circ o_2)(x))]이므로 [math((f \circ o_1 \circ e_1 \circ o_2)(x))]는 짝함수이다. === 미적분 === 홀함수를 [[미분]]하면 짝함수가 되고, 짝함수를 미분하면 홀함수가 된다. [[부정적분]]의 경우 홀함수를 적분하면 짝함수가 되지만, 반대로 짝함수를 적분하는 경우에는 적분상수의 존재 때문에 반드시 홀함수가 되리라는 보장이 없다. 단, [math(y)]축 위의 한 점에 대하여 [math(y)]절편을 [math(C)]([math(C)]: 적분상수)로 갖는, [math((0, C))] 좌표에 점대칭인 그래프를 갖는다. ==== [[정적분]] ==== 대칭함수의 성질을 가장 잘 활용하는 곳은 다름 아닌 정적분인데, 이는 함수의 그래프가 대칭인 특성상 적분식이 간단해지기 때문이다. 적분구간 [math([-a,\,a])] (단, [math(a>0)])에 대해서 다음이 성립한다. * 홀함수 : [math(\displaystyle \int_{-a}^a f(x) \,\mathrm{d}x = 0)] * 짝함수 : [math(\displaystyle \int_{-a}^a f(x) \,\mathrm{d}x = 2 \int_0^a f(x) \,\mathrm{d}x = 2 \int_{-a}^0 f(x) \,\mathrm{d}x)] 홀함수는 특성상 정적분 값은 0이 된다.[* 그래서 홀함수의 [[이상적분|[math((-\infty, \infty))] 구간열 적분]]을 구하는 것은 거의 금기 수준이다. 예를 들어 [math(x / (x^2+1))]][* 단, [[디리클레 함수]]는 홀함수가 아님에도 대칭 정적분 값이 0이다.] 그래서 정적분이 [[넓이]]를 구하기 위한 것이라면 [[절댓값]]을 취해 홀함수 부분은 0으로 날려버리고 짝함수 부분만 남긴 다음 위 대칭을 이용해 적분하면 편하다. === [[역함수]] === * 홀함수의 역함수도 홀함수이며 이는 물론 원래 함수와 직선 [math(y=x)]에 대하여 대칭이다. * [math(y = o_1(x), -y = o_1(-x))]에서 [math(o_1)]의 역함수를 [math(o_1^{-1})]이라 하면 [math(o_1^{-1}(-x) = -y, o_1^{-1}(x) = y)]이므로 [math(o_1^{-1}(-x) = -o_1^{-1}(x))]가 성립한다. 따라서 [math(o_1^{-1}(x))]는 홀함수이다. * 짝함수의 역함수는 [math(x)]축을 기준으로 선대칭을 이루는 '''[[음함수]]'''가 된다. ===# 예제 #=== 홀함수와 짝함수의 성질을 이용하는 문제가 '''2016학년도 수능 A형 20번'''에 출제되었다. [[파일:2016 수능 A형 20번.jpg|width=400&align=center]] {{{#!folding [풀이] ---- [math(f(x))]는 홀함수, [math(g(x))]는 짝함수이므로 [math(h(x)=f(x)g(x))]는 홀함수이다. 이에 따라 [math(h'(x))]는 짝함수이다. 결국 다음이 성립한다. ||
[math(\begin{aligned}\displaystyle\int_{-3}^3(x+5)h'(x)\,{\rm d}x&=\int_{-3}^3xh'(x)\,{\rm d}x+5\int_{-3}^3h'(x)\,{\rm d}x\\&=\int_{-3}^3xh'(x)\,{\rm d}x+10\int_0^3h'(x)\,{\rm d}x\\&=0+10\left[h(x)\right]_0^3=10\\\\\therefore\left[h(x)\right]_0^3&=1\end{aligned})] || 두 번째 등식은 [math(h'(x))]가 짝함수이므로 {{{#!wiki style="text-align: center;" [math(\displaystyle\int_{-3}^0h'(x)\,{\rm d}x=\displaystyle\int_0^3h'(x)\,{\rm d}x)]}}} 인 데서 성립하는 것이다. [math(h(x))]는 홀함수이므로 [math(h(0)=0)]에서 {{{#!wiki style="text-align: center;" [math(\left[h(x)\right]_0^3=h(3)-h(0)=h(3)=1)]}}}}}} == 여러 가지 함수에서 == === [[다항함수]] 및 [[역함수]] === 다항함수 중 [math(f(x)=a_1x^{2n}+a_2x^{2n-2}+...+a_nx^2+a_{n+1})]와 같이 지수가 짝수인 항과 상수항으로만 구성된 함수는 짝함수, [math(f(x)=a_1x^{2n-1}+a_2x^{2n-3}+...+a_{n-1}x^3+a_nx)]와 같이 지수가 홀수인 항만으로 구성된 함수는 홀함수이다. * 짝수차항만으로 구성된 함수 [math(a_1(-x)^{2n}+a_2(-x)^{2n-2}+...+a_n(-x)^2+a_{n+1} = a_1x^{2n}+a_2x^{2n-2}+...+a_nx^2+a_{n+1})]이므로 짝함수이다. 또는 짝함수인 1과 [math(x^2)]의 실수배 및 거듭제곱의 합이므로 짝함수라고 할 수도 있다. * 홀수차항만으로 구성된 함수 [math(a_1(-x)^{2n-1}+a_2(-x)^{2n-3}+...+a_{n-1}(-x)^3+a_n(-x) = -a_1x^{2n-1}-a_2x^{2n-3}-...-a_{n-1}x^3-a_nx = -(a_1x^{2n-1}+a_2x^{2n-3}+...+a_{n-1}x^3+a_nx))]이므로 홀함수이다. 또는 홀함수인 [math(x)]와 그것을 홀수 번 거듭제곱한 것의 합이므로 홀함수라고 할 수도 있다. 다항함수에서 더 확장해도 이 성질이 동일하게 적용된다. 즉 각 항의 지수가 음의 정수인 경우에도 양의 정수인 경우와 마찬가지이다. 정수 [math(a)]에 대해 [math(y=x^a)]인 함수를 [[멱함수]]라고 한다. 멱함수의 경우 함수가 짝함수인지 홀함수인지의 여부를 쉽게 알 수 있다. [math(y=x^2)] 또는 [math(y=x^4)]과 같이 [math(a)]가 [[짝수]]이면 짝함수이고, [math(y=\dfrac1x)] 또는 [math(y=x^3)]과 같이 [math(a)]가 [[홀수]]이면 홀함수이다. 멱함수를 이용하여 대칭함수의 성질을 보다 쉽게 이해할 수 있다. * '홀함수 × 홀함수 = 짝함수'와 같이 홀함수와 짝함수의 곱에서 곱해지는 홀함수의 개수가 홀수이면 홀함수, 0을 포함한 짝수이면 짝함수 : [math(y=x^{a_1}, ..., y=x^{a_n})]이 있다고 할 때, 이들의 곱은 지수법칙에 의해 [math(y=x^{a_1+a_2+...+a_n})]이 된다. 이때 곱해지는 홀함수의 개수는 [math(a_1, a_2, ..., a_n)] 중 홀수인 것의 개수와 같으므로, 홀수 개이면 [math(a_1+a_2+...+a_n)]의 값이 홀수가 되어 홀함수, 짝수 개이면 그 값이 짝수가 되어 짝함수가 된다. * 홀함수끼리 합성하면 홀함수가 되고, 합성되는 함수 중 짝함수가 있으면 짝함수 : 마찬가지로 [math(y=x^{a_1}, ..., y=x^{a_n})]을 모두 합성하면 [math(y=x^{a_1...a_n})]이 되는데, 이들 함수가 모두 홀함수이면 [math(a_1...a_n)] 역시 홀수이므로 홀함수가 되고, 짝함수가 1개라도 있으면 [math(a_1...a_n)] 역시 짝수가 되므로 짝함수가 된다. === [[삼각함수]] === * [math(a\times \sin(bx+n\pi), a\times \tan(bx+n\pi/2))] 꼴의 함수는 홀함수이다. 상수항 [math(d)]를 더하면 원점 대신 [math((0, d))]에 대해서 대칭이 된다. * [math(a\times \sin(b(-x)+n\pi) = a\times \sin(-bx+n\pi) = -a\times \sin(bx-n\pi) = -a\times \sin(bx-n\pi+2n\pi) = -a\times \sin(bx+n\pi))]가 성립한다. 여기서 [math(2n\pi)]의 값은 사인함수의 주기인 [math(2\pi)]의 배수이므로 더하거나 빼도 무방하다. * [math(a\times \tan(b(-x)+n\pi/2) = a\times \tan(-bx+n\pi/2) = -a\times \tan(bx-n\pi/2) = -a\times \tan(bx-n\pi/2+n\pi) = -a\times \tan(bx+n\pi/2))]가 성립한다. 여기서 [math(n\pi)]의 값은 탄젠트함수의 주기인 [math(\pi)]의 배수이므로 더하거나 빼도 무방하다. * [math(a\times \cos(bx+n\pi)+d)] 꼴의 함수는 짝함수이다. 상수항을 더하면 홀함수가 아니게 되는 사인, 탄젠트함수와 달리 상수항을 더해도 여전히 짝함수이다. * [math(a\times \cos(b(-x)+n\pi)+d = a\times \cos(-bx+n\pi)+d = a\times \cos(bx-n\pi)+d = a\times \cos(bx-n\pi+2n\pi)+d = a\times \cos(bx+n\pi)+d)]가 성립한다. 여기서 [math(2n\pi)]의 값은 코사인함수의 주기인 [math(2\pi)]의 배수이므로 더하거나 빼도 무방하다. * 역수꼴 함수 [math(a\times \csc(bx+n\pi), a\times \cot(bx+n\pi/2))] 꼴의 함수는 홀함수이고, [math(a\times \sec(bx+n\pi)+d)] 꼴의 함수는 짝함수이다. * [math({\rm sinc}(x) = \sin(x)/x)]는 홀함수÷홀함수 꼴이므로 짝함수이고, 그 역도함수인 [math({\rm Si}(x))]는 홀함수이다. * [math(\cos(x)/x)]는 짝함수÷홀함수 꼴이므로 홀함수이고, 그 역도함수인 [math({\rm Ci}(x))]의 실수부는 짝함수이다. * [math(\sin(x^2))], [math(\cos(x^2))]는 각각 홀함수[math(\circ)]짝함수, 짝함수[math(\circ)]짝함수 꼴이므로 짝함수이고, 그 역도함수인 [math(S(x))], [math(C(x))]는 홀함수이다. * [math(\sec(x))]는 짝함수이므로 그 역도함수인 [math({\rm igd}(x))]는 홀함수이다. == 짝함수나 홀함수가 아닌 대칭함수 == 짝함수는 y축 대칭이므로 짝함수의 그래프를 적절히 회전변환시키면 원점을 지나는, y축이 아닌 다른 직선에 대해서 대칭인 함수를 만들 수 있다. 또한 짝함수를 x축 방향으로 평행이동시키면 [math(x=k)] ([math(k)]는 실수)에 대칭인 함수를 만들 수 있다. 즉 임의의 짝함수 [math(y=e(x))]에 대해서 [math(y=e(x-k))]는 직선 [math(x=k)]에 대칭이다. y축 방향으로 평행이동시키면 대칭이 되는 직선이 변하지 않는다. 또한 회전변환+평행이동을 적절히 조합하면 원하는 직선에 대해 대칭인 함수를 만들 수 있다. 홀함수는 원점 대칭이므로, 홀함수를 x축 방향으로 a만큼, y축 방향으로 b만큼 평행이동시키면 점 (a, b)에 대칭인 함수를 만들 수 있다. 즉 임의의 홀함수 [math(y=o(x))]에 대해서 [math(y=o(x-a)+b)]는 점 (a, b)에 대해 대칭이다. [include(틀:문서 가져옴,title=함수,version=373)] [[분류:함수]]